Quantum Speed Limits

Adolfo del Campo

Department of Physics University of Massachusetts, Boston

XVIII Giambiagi Winter School: Quantum Chaos & Control

July 25-29 2016, Buenos Aires

Talk 1: STA in noncritical systems

Talk 2: STA in critical systems

Talk 3: Quantum Speed Limits

Talk 2: Contents

The Kibble-Zurek mechanism

- Universal phase-transition dynamics
- Quantum Annealing

Ways out

- Inhomogeneous driving
- Counterdiabatic driving

Counterdiabatic driving in a Quantum Phase Transition

Example: 1d Quantum Ising Chain

Ising chain Hamiltonian
$$\hat{H}_0(t) = -\sum_{n=1}^N \left[\sigma_n^x \sigma_{n+1}^x + g(t)\sigma_n^z\right]$$

Critical point $g_c = 1$

$$\begin{array}{c|ccc} g \gg 1 & | \rightarrow \rightarrow \rightarrow \cdots \rightarrow \rangle & g \ll 1 & | \uparrow \uparrow \uparrow \dots \uparrow \rangle \\ & \text{z-axis} & | \downarrow \downarrow \downarrow \dots \downarrow \rangle \end{array}$$

x-axis

Example: 1d Quantum Ising Chain

Ising chain Hamiltonian
$$\hat{H}_0(t) = -\sum_{n=1}^N \left[\sigma_n^x \sigma_{n+1}^x + g(t) \sigma_n^z\right]$$

Critical point $g_c = 1$

$$\begin{array}{c|c} g \gg 1 & | \rightarrow \rightarrow \rightarrow \cdots \rightarrow \rangle & g \ll 1 & | \uparrow \uparrow \uparrow \dots \uparrow \rangle \\ & z\text{-axis} & | \downarrow \downarrow \downarrow \dots \downarrow \rangle \end{array}$$

x-axis

Example: 1d Quantum Ising Chain

Ising chain Hamiltonian
$$\hat{H}_0(t) = -\sum_{n=1}^N \left[\sigma_n^x \sigma_{n+1}^x + g(t) \sigma_n^z\right]$$

Critical point $g_c = 1$

$$\begin{array}{c|c} g \gg 1 & | \rightarrow \rightarrow \rightarrow \cdots \rightarrow \rangle & g \ll 1 & | \uparrow \uparrow \uparrow \dots \uparrow \rangle \\ & z\text{-axis} & | \downarrow \downarrow \downarrow \dots \downarrow \rangle \end{array}$$

x-axis

Counterdiabatic driving: Ising Chain

Counterdiabatic driving?

Auxiliary control

 $\hat{H}_1(t) = i\hbar \sum \left(|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n| \right)$ n

A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Counterdiabatic driving: Ising Chain

Counterdiabatic driving?

Auxiliary control

$$\hat{H}_1(t) = i\hbar \sum_n \left(|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n| \right)$$

Diagonalization: Jordan Wigner transformation + Fourier transform

$$\hat{H}_{0}(t) = 2 \sum_{k>0} \Psi_{k}^{\dagger} \left[\sigma_{k}^{z}(g(t) - \cos k) + \sigma_{k}^{x} \sin k \right] \Psi_{k}$$

$$\hat{H}_{1}(t) = -\dot{g}(t) \sum_{k>0} \frac{1}{2} \frac{\sin k}{g^{2} + 1 - 2g \cos k} \Psi_{k}^{\dagger} \sigma_{k}^{y} \Psi_{k}$$
Long-range many-body interaction!
A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Truncated Auxiliary Hamiltonian

Quench through the critical point $g(t) = g_c - vt$

Truncated Auxiliary Hamiltonian

A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Truncated Auxiliary Hamiltonian

Quench through the critical point $g(t) = g_c - vt$

Truncated Auxiliary Hamiltonian

A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Tailoring control fields

H. Saberi, T. Opatrný, K. Mølmer, AdC, Phys. Rev. A 90, 060301(R) (2014)

Tailoring auxiliary interactions

Set of available controls $\{L_k\}$

Approximated Auxiliary Hamiltonian

$$\tilde{H}_1 = \sum_{k=1}^K \alpha_k L_k$$

Minimize the norm

$$\min_{\{\alpha_k\}} ||(H_1 - \tilde{H}_1)|GS(t)\rangle||^2$$

T. Opatrný, K. Mølmer, NJP 16, 015025 (2014) H. Saberi, T. Opatrný, K. Mølmer, AdC, Phys. Rev. A 90, 060301(R) (2014)

Suppressing KZM/excitations

H. Saberi, T. Opatrný, K. Mølmer, AdC, Phys. Rev. A 90, 060301(R) (2014)

Talk 1: STA in noncritical systems

Talk 2: STA in critical systems

Talk 3: Quantum Speed Limits

Ultimate Quantum Speed Limits

Ultimate Quantum Speed Limits

Courtesy of Guy Chenu

Speed limits for Isolated systems

How fast can we go?

Not faster than the Quantum Speed Limit

Minimum time required for a quantum state to evolve to an orthogonal state

$$T \geq \frac{\pi}{2} \max\left(\frac{\hbar}{E}, \frac{\hbar}{\Delta E}\right)$$

Time-energy uncertainty relation

Beautiful history

Passage time: Minimum time required for a state to reach an orthogonal state

Landau Krylov

1945 Mandelstam and Tamm "MT"

1967 Fleming

1990 Anandan, Aharonov

1992 Vaidman, Ulhman

1993 Uffnik

1998 Margolus & Levitin "ML"

2000 Lloyd

2003 Giovannetti, Lloyd, Maccone: MT & ML unified

2003 Bender: no bounds in PT-symmetric QM

2009 Levitin, Toffoli

2013 2013 Bound for open (as well as unitary) system dynamics!

AdC, I.L. Egusquiza, M. B. Plenio, S. Huelga PRL **110**, 050403 (2013)

Two seminal results

Mandelstam-Tamm (1945)

Heisenberg EOM + definition of time TEUR

$$\frac{d}{dt}\hat{A} = \frac{1}{i\hbar}[\hat{A},\hat{H}] \qquad \tau(A) = \frac{\Delta A}{\frac{d}{dt}\langle\hat{A}\rangle} \qquad \tau(A)\Delta H \ge \frac{\hbar}{2}$$

Margolus-Levitin (1998)

Survival amplitude, vanishing real and imaginary parts

$$|\Psi(t)\rangle = \sum_{n} c_{n} e^{-iE_{n}t/\hbar} |n\rangle \quad a(t) := \langle \psi(0)|\psi(t)\rangle \quad \operatorname{Re}(a) \ge 1 - \frac{2E}{\pi\hbar}t + \operatorname{Im}(a)$$

 $\tau \ge \frac{h\pi}{2E}$

Speed limits for arbitrary systems

Isolated systems: unitary dynamics

$$T \ge \frac{\pi}{2} \max\left(\frac{\hbar}{E}, \frac{\hbar}{\Delta E}\right)$$

Real systems: coupled to an environment

Nonunitary dynamics (master equation)

$$\frac{d\rho_t}{dt} = \mathcal{L}\rho_t$$

What replaces energy in an open system?

Bound to the speed of evolution for open (as well as unitary) system dynamics

$$f(t) = \operatorname{tr}(\rho_0 \rho_t) \quad |\dot{f}(t)| = |\operatorname{tr}(\rho_0 \mathcal{L} \rho_t)| \le \sqrt{\operatorname{tr}[(\mathcal{L}^{\dagger} \rho_0)^2]}$$

includes coupling to an environment

$$E, \Delta E \to \sqrt{\mathrm{Tr}[(\mathcal{L}^{\dagger}\rho_0)^2]}$$

AdC et al. PRL **110**, 050403 (2013) Taddei et al. PRL **110**, 050402 (2013) See too Deffner et Lutz, PRL **111**, 010402 (2013)

Applications of Quantum Speed Limits

Arbitrary physical processes
Foundations of Physics
Computation
Thermodynamics
Optimal control
Metrology

Courtesy of Guy Chenu

QSL to the generation of Quantumness

Coherence monotone

$$Q(t) = 2 \| [\rho_0, \rho_t] \|^2 \in [0, 1]$$

Arbitrary physical process

$$\frac{d\rho_t}{dt} = \mathcal{L}\rho_t$$

1

Quantum Speed Limit

$$\tau \ge \sqrt{\frac{Q(\tau)}{2}} \frac{1}{\|[\rho_0, \mathcal{L}\rho_t]\|}$$

Different in nature from MT & ML bounds

Jing, Wu, AdC, arXiv:1510.01106

Applications Quantum Speed Limits in finite-time thermodynamics

Quantum Heat Engines (e.g. Otto Cycle)

Efficiency vs Power

1

Quantum efficiency

$$\eta = -\frac{\langle W_1 \rangle + \langle W_3 \rangle}{\langle Q_2 \rangle}$$

Nonadiabatic Efficiency e.g. of a single-particle Otto cycle

$$\eta = 1 - \frac{\omega_1}{\omega_2} f[\omega(t)] \le 1 - \frac{\omega_1}{\omega_2}$$

Essence of finite-time thermodynamics:

Trade-off between efficiency and power

Shortcuts as a way out of the tragedy

Shortcuts to adiabaticity

- AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle)
- M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle)

Shortcuts as a way out of the tragedy

Shortcuts to adiabaticity

Quantum Heat Engines (e.g. Otto Cycle)

Superadiabatic quantum engine

STA in steps 1 & 2 Thermalization time << adiabats

Thermodynamic cycle at finite power and zero friction i.e., maximum efficiency $\omega(\tau)$

Thermal state at t=0 in stroke 1)

$$\delta W = \langle W \rangle - \langle W_{ad} \rangle = \frac{1}{\beta_t} S(\rho_t || \rho_t^{ad}), \quad \beta_t = \beta_0 \epsilon_n(0) / \epsilon_n(t)$$

Energy Cost of Shortcuts to Adiabaticity

$$\delta W = \langle W \rangle - \langle W_{ad} \rangle \qquad \langle \delta W \rangle = \frac{1}{\tau} \int_{0}^{\tau} \delta W dt$$

$$\int_{0}^{10^{-1}} \int_{0}^{10^{-1}} \beta = 1, \gamma = 2$$

$$\int_{0}^{10^{-2}} \beta = 1, \gamma = 4$$

$$\int_{0}^{10^{-2}} \beta = 1, \gamma = 4$$

$$\int_{0}^{10^{-2}} \beta = 5, \gamma = 2$$

Performance: Ultimate Quantum Limits

Fundamental bound to the output power of a QHE

$$\mathscr{P} \leq -\frac{\langle W_{\mathrm{ad},1}(\tau) \rangle + \langle W_{\mathrm{ad},3}(\tau) \rangle}{\hbar \mathscr{L}\left(\rho_{\tau}^{\mathrm{eq}},\rho_{0}\right)} \max\left\{E_{\tau},\Delta E_{\tau}\right\}$$

To be extended to include strokes with open dynamics

AdC, Goold, Paternostro, Sci. Rep. 4, 6208 (2014)

Scalable QHE assisted by shortcuts to adiabaticity

- Thermodynamic cycle working at tunable finite power and zero friction
- Quantum speed limits impose ultimate performance bounds

Eco-friendly Lamborghini!

- AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014)
 - M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016)

Applications Quantum Speed Limits and counterdiabatic driving

Energy cost of counterdiabatic driving

Full Driving Hamiltonian $H[\lambda(t)] = H_0[\lambda(t)] + H_1[\lambda(t)]$

Auxiliary control (with no degeneracy)

$$H_1 = i\hbar\dot{\lambda}\sum_n \sum_{k\neq n} |n\rangle \frac{\langle n|\partial_\lambda|k\rangle}{E_k - E_n} \langle k|$$

Energy fluctuations

 $\Delta H^2 = \langle 0(t) | H_1^2 | 0(t) \rangle = |\dot{\lambda}|^2 \chi_F(\lambda)$

A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Energy cost of counterdiabatic driving

Full Driving Hamiltonian $H[\lambda(t)] = H_0[\lambda(t)] + H_1[\lambda(t)]$

Auxiliary control (with no degeneracy)

$$H_1 = i\hbar\dot{\lambda}\sum_n \sum_{k\neq n} |n\rangle \frac{\langle n|\partial_\lambda|k\rangle}{E_k - E_n} \langle k|$$

Energy fluctuations

$$\Delta H^2 = \langle 0(t) | H_1^2 | 0(t) \rangle = |\dot{\lambda}|^2 \chi_F(\lambda)$$

Fidelity susceptibility

$$|\langle 0(\lambda)|0(\lambda+\delta)\rangle|^2 \approx 1 - \delta^2 \chi_F(\lambda)$$
$$\chi_F(\lambda) = \sum_{n \neq 0} \frac{|\langle n(\lambda)|\partial_\lambda H_0|0(\lambda)\rangle|^2}{(E_n - E_0)^2}$$

A. del Campo, M. M. Rams, W. H. Zurek, PRL 109, 115703 (2012)

Energy cost of counterdiabatic driving

Full Driving Hamiltonian $H[\lambda(t)] = H_0[\lambda(t)] + H_1[\lambda(t)]$

Auxiliary control (with no degeneracy)

$$H_1 = i\hbar\dot{\lambda}\sum_n \sum_{k\neq n} |n\rangle \frac{\langle n|\partial_\lambda|k\rangle}{E_k - E_n} \langle k|$$

Energy fluctuations

$$\Delta H^2 = \langle 0(t) | H_1^2 | 0(t) \rangle = |\dot{\lambda}|^2 \chi_F(\lambda)$$

Fidelity susceptibility across a phase transition: divergence with system size

AdC, M. M. Rams, W. H. Zurek, PRL **109**, 115703 (2012) H. Saberi, T. Opatrný, K. Mølmer, AdC, Phys. Rev. A **90**, 060301(R) (2014) MASS, AdC & K. Sengupta, Eur. Phys. J. Special Topics **224**, 189 (2015)

Summary

Shortcuts to adiabaticity speed up processes by tailoring excitations

Yet, Quantum Speed Limits rule any dynamical process

- Mandelstam-Tamm, Margolus-Levitin, QSL for open systems
- ♦ QSL in Quantum Thermodynamics
- ♦ QSL to counterdiabatic driving

The Group

Mathieu Beau (UMass) Juan Jaramillo (UMass => NUS) Anirban Dutta (UMass) Suzanne Pittmann (UMass/Harvard)

Collaborators

Aurelia Chenu (MIT) Jianshu Cao (MIT) Armin Rahmani (British Columbia) Marek Rams (Jagiellonian) Masoud Mohseni (Google) Enrique Solano (Bilbao) Wojciech Zurek (LANL) Chuang-Fen Li (Hefei) Guan-Can Guo (Hefei)

Thanks for your attention!!

Adolfo del Campo: adolfo.delcampo@gmail.com

Do visit us! MSc, PhD students & postdocs!

111111111

CONTRACTOR OF STREET, STREET,

Time-energy uncertainty relation

Isolated systems: unitary dynamics

$$T \ge \frac{\pi}{2} \max\left(\frac{\hbar}{E - E_0}, \frac{\hbar}{\Delta E}\right)$$

Real systems: coupled to an environment

Nonunitary dynamics

$$\frac{d\rho_t}{dt} = \mathcal{L}\rho_t$$

What is the speed limit in an open system?

Bound to the speed of evolution for open (as well as unitary) system dynamics

includes coupling to an environment

$$E, \Delta E \to \sqrt{\mathrm{Tr}[(\mathcal{L}^{\dagger} \rho_0)^2]}$$

AdC, I.L. Egusquiza, M. B. Plenio, S. Huelga PRL **110**, 050403 (2013) See too: M. M. Taddei et al. PRL **110**, 050402 (2013) S. Deffner and E. Lutz, PRL **111**, 010402 (2013)

Quantum Heat Engine: Otto cycle

