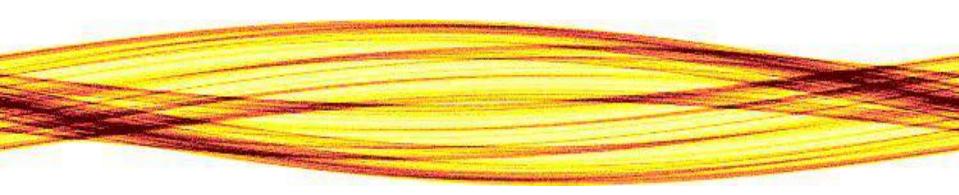
Shortcuts to Adiabaticity and Quantum Speed Limits

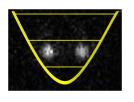
Adolfo del Campo

Department of Physics University of Massachusetts, Boston

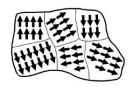


XVIII Giambiagi Winter School: Quantum Chaos & Control

July 25-29 2016, Buenos Aires



Talk 1: STA in noncritical systems



Talk 2: STA in critical systems

Talk 3: Quantum Speed Limits

Talk 1: Contents

Techniques

- Inverting scaling laws
- Counterdiabatic driving
- Fast-Forward technique

Applications

- Fast transport
- Quantum thermodynamics

Consider driving a system Hamiltonian

$$\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Consider driving a system Hamiltonian

$$|\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar} \int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right] |n(t)\rangle$$

Consider driving a system Hamiltonian

$$|\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar} \int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right] |n(t)\rangle$$

Approximate solution of the TDSE

$$i\hbar\partial_t|\psi_n(t)\rangle \approx \hat{H}(t)|\psi_n(t)\rangle$$

Under SLOW driving

$$\hbar \frac{\langle n | \partial_t k \rangle}{E_n - E_k} \ll 1, \forall n \neq k$$

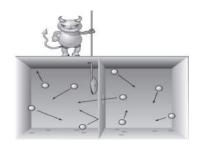
Slow driving of a system

Provides good control

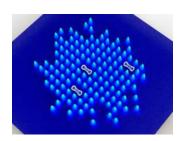
No excitations

So, why shortcuts?

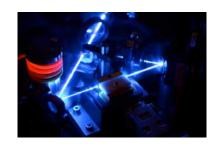
Well ...



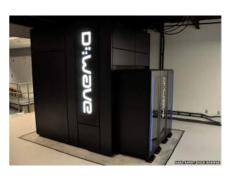
Quantum
thermodynamics
energy conversion
ground state cooling



Quantum Simulation
& Condensed Matter
defect suppression



Quantum Information
Quantum Optics
decoherence, noise



Adiabatic Quantum Computation

Shortcuts to adiabaticity

Fast non-adiabatic process that mimics adiabatic dynamics e.g. to prepare a state

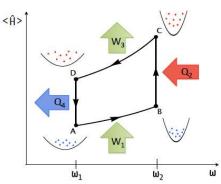
[Review: Adv. At. Mol. Opt. Phys. 62, 117 (2013)]

Processes: Expansion, transport, splitting, adiabatic passage, phase transitions, ...

Systems: ultracold atoms, ions chains, quantum dots, spin systems, NVC, ...

Experiments: Nice, NIST, Mainz, PTB, MPQ, Florence, Trento, Tsukuba, ...

Shortcuts to adiabaticity

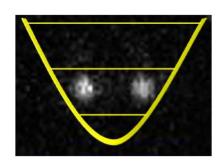


Quantum thermodynamics

Chen et al, PRL 104, 063002 (2010) AdC & Boshier, Sci. Rep. 2, 648 (2012) AdC, Goold, Paternostro Sci. Rep. 4, 6208 (2014) Jaramillo, Beau, AdC, arXiv:1510.04633 (2016) Beau, Jaramillo, AdC, Entropy 18, 168 (2016)

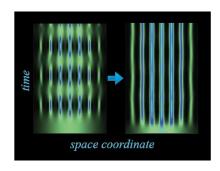
Quantum microscopy

AdC, EPL 96, 60005 (2011) AdC, PRA 84, 031606(R) (2011) AdC, PRL 111, 100502 (2013)



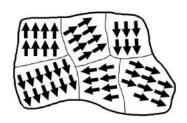
Transport

Deffner, Jarzynski, AdC PRX 4, 021013 (2014) An, Lv, AdC, Kihwan Kim, arXiv:1601.05551



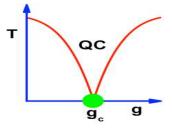
Loading optical lattice

Masuda, Nakamura, AdC PRL 113, 063003 (2014)



Topological Defect suppression

AdC et al. PRL105, 075701 (2010)
AdC et al. NJP 13, 083022 (2011)
Pyka et al. Nat. Commun. 4, 2291 (2013)
AdC, Kibble, Zurek, JPCM 25, 404210 (2013)
AdC & Zurek Int. J. Mod. Phys. A 29, 1430018 (2014)



Adiabatic crossing of quantum phase transition

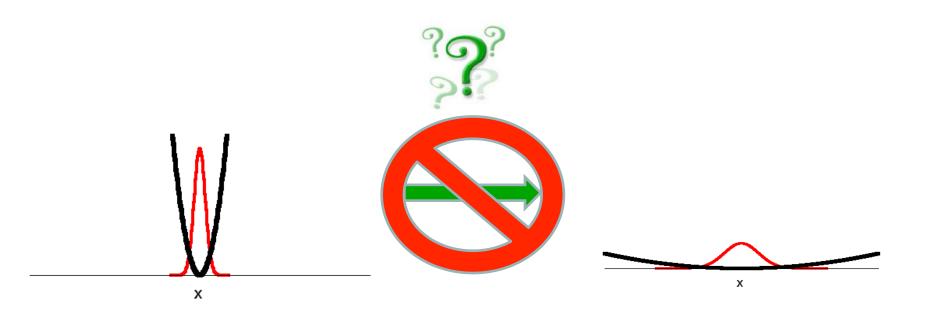
AdC, Rams, Zurek PRL 109, 115703 (2012) Saberi, Opatrný, Mølmer, AdC, PRA 90, 060301(R) AdC & Sengupta, EPJ ST 224, 189 (2015) Rams, Mohseni, AdC, TBS (2015)

And many other applications

(chemical rate processes, quantum logic gates, soliton dynamics, atom interferometry, ...)

Inverting Scaling Laws

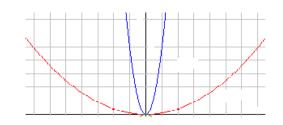
Inverting Scaling Laws



Standard expansion

Opening the trap

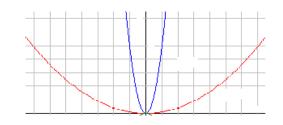
$$\omega(t) = \omega_i \left[1 + \frac{\omega_f - \omega_i}{\omega_i} \tanh \frac{t}{\tau} \right]$$



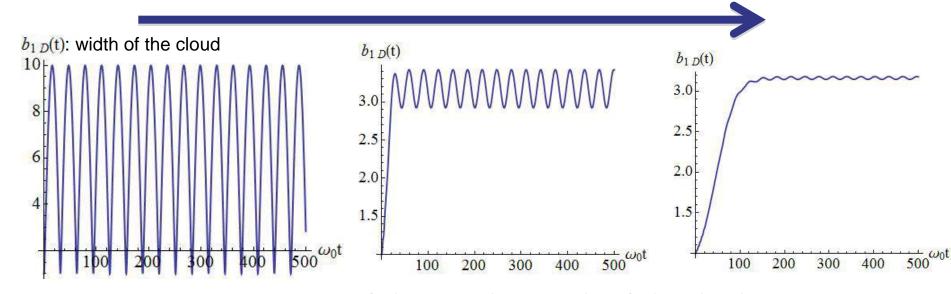
Standard expansion

Opening the trap

$$\omega(t) = \omega_i \left[1 + \frac{\omega_f - \omega_i}{\omega_i} \tanh \frac{t}{\tau} \right]$$



from sudden to adiabatic



Excitation of the breathing mode of the cloud

Self-similar dynamics

1. Consider a time-dependent Hamiltonian harmonic oscillator

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} m\omega(t)^2 x^2$$

$$\hat{H}\phi_n(x) = E_n \phi_n(x)$$

2. Impose a self-similar dynamical ansatz

$$\phi(x,t) = \frac{1}{b(t)^{1/2}} \exp\left[i\frac{m\dot{b}(t)}{2\hbar b(t)}x^2 - i\int_0^t \frac{E_n}{b(s)^2}ds\right] \phi\left[\frac{x}{b(t)}, t = 0\right]$$

3. Get the consistency equation: scaling factor as function of trap frequency

$$\ddot{b} + \omega^2(t)b = \omega_0^2/b^3$$

Self-similar dynamics

1. Take a somewhat general many-body time-dependent Hamiltonian

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta_i^{(D)} + \frac{1}{2} m \omega^2(t) \mathbf{x}_i^2 \right] + \epsilon \sum_{i < j} V(\mathbf{x}_{ij}) \qquad \mathbf{x}_i \in \mathbb{R}^D, \ \mathbf{x}_{ij} = \mathbf{x}_i - \mathbf{x}_j$$

With a potential satisfying

$$V(\lambda \mathbf{x}) = \lambda^{\alpha} V(\mathbf{x})$$

2. Impose a self-similar dynamical ansatz

$$\Phi\left(\{\mathbf{x}_i\},t\right) = \frac{1}{b^{D/2}} e^{i\sum_{i=1}^{N} \frac{m\mathbf{x}_i^2b}{2b\hbar} - i\mu\tau(t)/\hbar} \Phi\left(\{\frac{\mathbf{x}_i}{b}\},0\right)$$

3. Get the consistency equations, i.e.

$$\ddot{b} + \omega^2(t)b = \omega_0^2/b^3 \qquad \epsilon(t) = b^{\alpha - 2}$$

Design of a shortcut to adiabaticity

1. Force the scaling ansatz to reduce to the initial and final states considered

Boundary conditions:

$$b(0) = 1, \quad \dot{b}(0) = 0, \quad \ddot{b}(0) = 0$$

 $b(\tau) = \sqrt{\frac{\omega_f}{\omega_0}}, \quad \dot{b}(\tau) = 0, \quad \ddot{b}(\tau) = 0$

2. Determine an ansatz for the scaling factor (e.g. a polynomial)

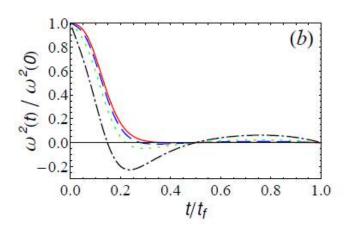
$$b(t) = \sum_{j=0}^{5} a_j t^j$$

3. Find the driving frequency and coupling strength from the consistency

equations

$$\ddot{b} + \omega^2(t)b = \omega_0^2/b^3$$

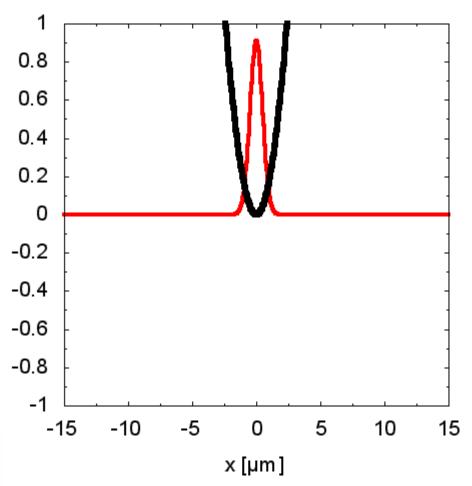
$$\epsilon(t) = b^{\alpha - 2}$$

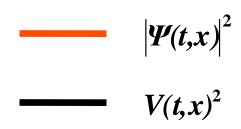


Chen et al. Phys. Rev. Lett. **104**, 063002 (2010) del Campo, PRA **84**, 031606(R) (2011)

Example

Time Evolution:





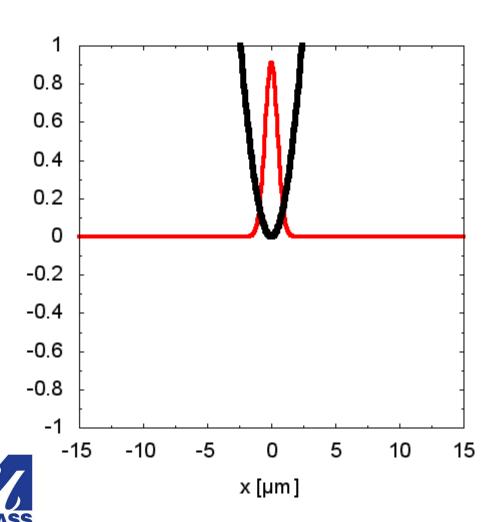
$$\omega_0 = 250 \times 2\pi \, Hz$$

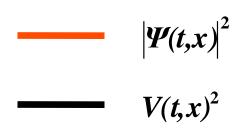
$$\omega_f = 2.5 \times 2\pi \, Hz$$

$$t_f = 2 \, ms$$

Example

Time Evolution:



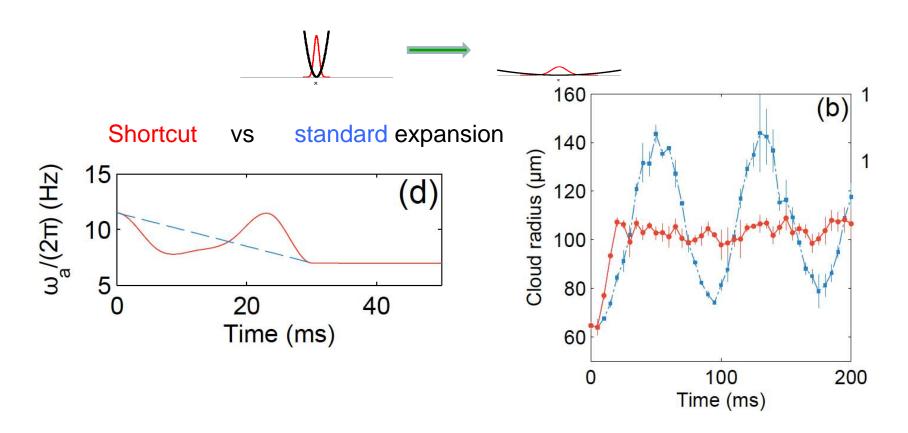


$$\omega_0 = 250 \times 2\pi \, Hz$$

$$\omega_f = 2.5 \times 2\pi \, Hz$$

$$t_f = 2 \, ms$$

Experiments: Thermal cloud, BEC and 1D Bose gas



Experiments: 1D Bose gas

Rohringer et al. Sci. Rep. 5, 9820 (2015)

Experiments: mean-field BEC

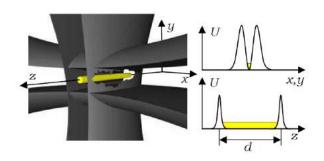
J.-F. Schaff et al. EPL 93, 23001 (2011)

Experiments: single-particle

J.-F. Schaff et al. Phys. Rev. A 82, 033430 (2010)

Theory (quantum fluids) Chen et al. PRL **104**, 063002 (2010) AdC PRA **84**, 031606(R) (2011) AdC PRL **111**, 100502 (2013)

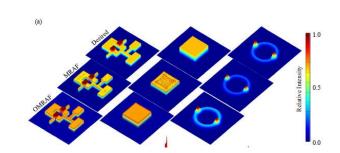
Nonharmonic traps? Boxes?

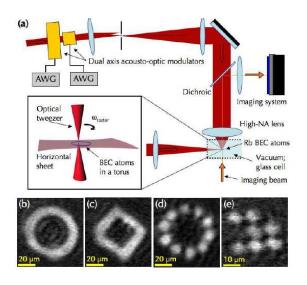


UT Austin all optical box at Raizen's Lab PRA, 71, 041604(R) (2005).

Cambridge's boxes

A. L. Gaunt, Z. Hadzibabic, Sci. Rep. 2, 721 (2012)

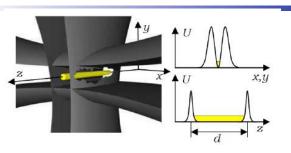




Boshier's group at LANL New J. Phys. 11, 043030 (2009)

+ implementations in atom chips

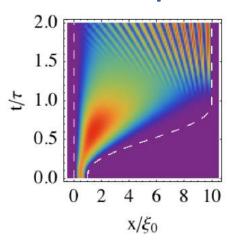
Quantum Piston



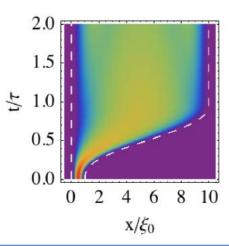
AdC & Boshier, Sci. Rep 2, 648 (2012) AdC, PRL 111, 100502 (2013)

Quantum Piston

normal expansion



shortcut to adiabaticity



$$\Omega^2(t) = 0$$

$$\Omega^2(t) = -rac{\ddot{\xi}(t)}{\xi(t)} \sim rac{1}{ au}$$

Consider driving a system Hamiltonian

$$|\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar} \int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right] |n(t)\rangle$$

Consider driving a system Hamiltonian

$$|\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar} \int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right] |n(t)\rangle$$

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t|\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Consider driving a system Hamiltonian

$$|\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar} \int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right] |n(t)\rangle$$

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t|\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Yes, indeed!

$$\hat{H}(t) \equiv \hat{H}_0(t) + \hat{H}_1(t)$$

$$\hat{H}_1(t) = i\hbar \sum_{n} (|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n|)$$

١

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t|\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Yes, indeed!

$$\hat{H}(t) \equiv \hat{H}_0(t) + \hat{H}_1(t)$$

$$\hat{H}_1(t) = i\hbar \sum_{n \neq m} \sum_{m} \frac{|m\rangle\langle m|\partial_t \hat{H}_0|n\rangle\langle n|}{E_n(t) - E_m(t)}$$

Theory: Demirplak & Rice 2003; = M. V. Berry 2009 "Transitionless quantum driving"

CD inspired experiment for TLS: Morsch's group Nature Phys. 2012; NVC: Suter's group PRL 2013

Counterdiabatic driving: applications

Counterdiabatic terms are often nonlocal

Search for experimentally-realizable local Unitarily equivalent Hamiltonians

$$\hat{H}' = U\hat{H}U^{\dagger} - i\hbar U\partial_t U^{\dagger}$$

RAP in Two level system (spin flip)

$$\hat{H}_1 \propto \sigma_y \qquad \hat{H}_1' \propto \sigma_z$$

$$\hat{H}_1' \propto \sigma_z$$

Demirplak & Rice 2003

Bason et al 2012

Time-dependent harmonic oscillator

$$\hat{H}_1 \propto (xp + px)$$
 $\hat{H}_1' \propto x^2$

$$\hat{H}_1' \propto x^2$$

Muga el at 2010, Jarzynski 2013

Ibáñez et al 12, AdC 13

Transport of matter waves

$$\hat{H}_1 \propto p \qquad \hat{H}_1' \propto x$$

Deffner-Jarzynski-AdC 14

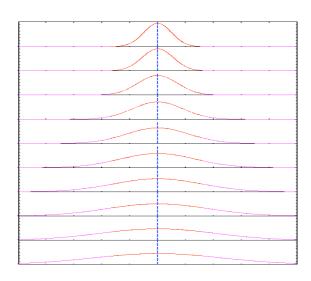
Theory: Demirplak & Rice 2003; M. V. Berry 2009

Experiment for TLS: Morsch's group Nature Phys. 2012; NVC: Suter's group PRL 2013

Interacting quantum fluids

$$\hat{H} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m\omega(t)^2 \mathbf{r}_i^2 \right] + \sum_{i < j} V(\mathbf{r}_i - \mathbf{r}_j)$$

Scaling-invariant dynamics when $V(\gamma {f r}) = \gamma^{-2} V({f r})$



Interacting quantum fluids

$$\hat{H} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m\omega(t)^2 \mathbf{r}_i^2 \right] + \sum_{i < j} V(\mathbf{r}_i - \mathbf{r}_j)$$

Counterdiabatic Driving?

Spectral properties unavailable, even by numerical methods

More general case

$$\hat{H}_0(t) = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta_{\mathbf{q}_i} + \frac{1}{2} m \omega^2(t) \mathbf{q}_i^2 + U(\mathbf{q}_i, t) \right] + \epsilon(t) \sum_{i < j} V(\mathbf{q}_i - \mathbf{q}_j)$$

$$\gamma(t) = \left[\frac{\omega(0)}{\omega(t)} \right]^{1/2} \qquad U(\mathbf{q}, t) = \frac{1}{\gamma^2(t)} U\left(\frac{\mathbf{q}}{\gamma(t)}, 0 \right), \qquad V(\lambda \mathbf{q}) = \lambda^{-\alpha} V(\mathbf{q})$$

More general case

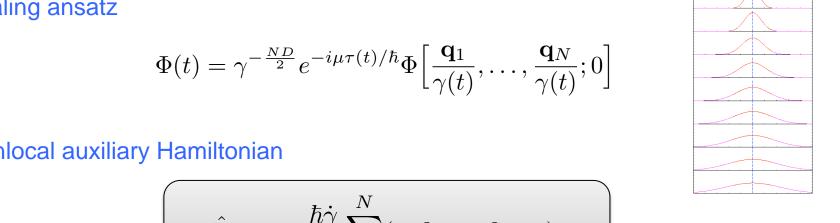
$$\hat{H}_0(t) = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta_{\mathbf{q}_i} + \frac{1}{2} m \omega^2(t) \mathbf{q}_i^2 + U(\mathbf{q}_i, t) \right] + \epsilon(t) \sum_{i < j} V(\mathbf{q}_i - \mathbf{q}_j)$$

$$\gamma(t) = \left[\frac{\omega(0)}{\omega(t)} \right]^{1/2} \qquad U(\mathbf{q}, t) = \frac{1}{\gamma^2(t)} U\left(\frac{\mathbf{q}}{\gamma(t)}, 0 \right), \qquad V(\lambda \mathbf{q}) = \lambda^{-\alpha} V(\mathbf{q})$$

Scaling ansatz

Nonlocal auxiliary Hamiltonian

$$\hat{H}_1 = -i\frac{\hbar \dot{\gamma}}{2\gamma} \sum_{i=1}^{N} (\mathbf{q}_i \partial_{\mathbf{q}_i} + \partial_{\mathbf{q}_i} \mathbf{q}_i)$$



More general case

$$\hat{H}_0(t) = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta_{\mathbf{q}_i} + \frac{1}{2} m \omega^2(t) \mathbf{q}_i^2 + U(\mathbf{q}_i, t) \right] + \epsilon(t) \sum_{i < j} V(\mathbf{q}_i - \mathbf{q}_j)$$

$$\gamma(t) = \left[\frac{\omega(0)}{\omega(t)} \right]^{1/2} \qquad U(\mathbf{q}, t) = \frac{1}{\gamma^2(t)} U\left(\frac{\mathbf{q}}{\gamma(t)}, 0 \right), \qquad V(\lambda \mathbf{q}) = \lambda^{-\alpha} V(\mathbf{q})$$

Scaling ansatz
$$\Phi(t) = \gamma^{-\frac{ND}{2}} e^{-i\mu\tau(t)/\hbar} \Phi\Big[\frac{\mathbf{q}_1}{\gamma(t)}, \dots, \frac{\mathbf{q}_N}{\gamma(t)}; 0\Big]$$

Unitary transformation
$$\mathcal{U} = \prod_{i=1}^{N} \exp\left(\frac{im\dot{\gamma}}{2\hbar\gamma}\mathbf{q}_{i}^{2}\right), \Phi(t) \rightarrow \Psi(t) = \mathcal{U}\Phi(t)$$

LOCAL auxiliary Hamiltonian

$$\hat{\mathcal{H}}_1 = -\frac{1}{2}m\frac{\ddot{\gamma}}{\gamma}\sum_{i=1}^N \mathbf{q}_i^2$$

Quantum fluids: scaling laws & counterdiabatic driving

Family of interacting quantum fluids

$$\hat{H} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m\omega(t)^2 \mathbf{r}_i^2 \right] + \sum_{i < j} V(\mathbf{r}_i - \mathbf{r}_j)$$

Scaling-invariant dynamics when $V(\gamma \mathbf{r}) = \gamma^{-2} V(\mathbf{r})$

Shortcut to adiabaticity = Fast motion video of adiabatic dynamics

Auxiliary Counterdiabatic Control => harmonic trap

$$\omega(t)^2 \to \Omega^2(t) = \omega^2(t) - \frac{3}{4} \frac{\dot{\omega}^2}{\omega^2} + \frac{1}{2} \frac{\ddot{\omega}}{\omega}.$$

Counterdiabatic driving: Experiments

Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms

Yan-Xiong Du¹, Zhen-Tao Liang¹, Yi-Chao Li², Xian-Xian Yue¹, Qing-Xian Lv¹, Wei Huang¹, Xi Chen², *, Hui Yan¹, *, Shi-Liang Zhu^{3,1,4}, *

¹Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,

SPTE, South China Normal University, Guangzhou 510006, China

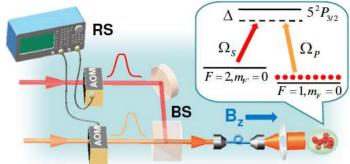
²Department of Physics, Shanghai University, Shanghai 200444, China

³National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China

⁴Synergetic Innovation Center of Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei 230026, China

CD for 2 & 3 Level systems



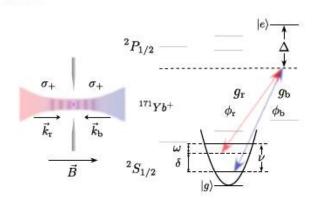
Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport

Shuoming An, ¹ Dingshun Lv, ¹ Adolfo del Campo, ² and Kihwan Kim ¹
¹ Center for Quantum Information, Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing 100084, People's Republic of China

² Department of Physics, University of Massachusetts, Boston, MA 02125, USA

CD for systems with Continuous Variables



Fast-forward technique

Scale invariance is kind of classical Really needed?

Theory: Masuda & Nakamura 2008, 2010, 2011

Experiments: ???

Fast-forward technique

Consider the dynamics (mean-field)

$$i\hbar\partial_t\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + (\mathcal{V} + \mathcal{V}_{\mathrm{au}})\Psi + g|\Psi|^2\Psi,$$

Ansatz for the evolution

$$\Psi(\mathbf{q},t) = \psi[\mathbf{q},R(t)]e^{i\phi(\mathbf{q},t)}e^{-\frac{i}{\hbar}\int_0^t \mu[R(t')]dt'}$$
$$-\frac{\hbar^2}{2m}\nabla^2\psi + \mathcal{V}\psi + g|\psi|^2\psi = \mu\psi.$$

where

Theory: Masuda & Nakamura 2008, 2010, 2011

Experiments: ???

Fast-forward technique

Consider the dynamics (mean-field)

$$i\hbar\partial_t\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + (\mathcal{V} + \mathcal{V}_{\mathrm{au}})\Psi + g|\Psi|^2\Psi,$$

Ansatz for the evolution

$$\Psi(\mathbf{q},t) = \psi[\mathbf{q},R(t)]e^{i\phi(\mathbf{q},t)}e^{-\frac{i}{\hbar}\int_0^t \mu[R(t')]dt'}$$
$$-\frac{\hbar^2}{2m}\nabla^2\psi + \mathcal{V}\psi + g|\psi|^2\psi = \mu\psi.$$

where

Substituting ansatz, separating real and imaginary parts

$$\mathcal{V}_{au}(\mathbf{q}, t) = -\frac{\hbar^2}{2m} (\nabla \phi)^2 - \hbar \partial_t \phi$$
$$\nabla^2 \phi + 2\nabla \ln \psi \cdot \nabla \phi + \frac{2m}{\hbar} \dot{R} \partial_R \ln \psi = 0$$

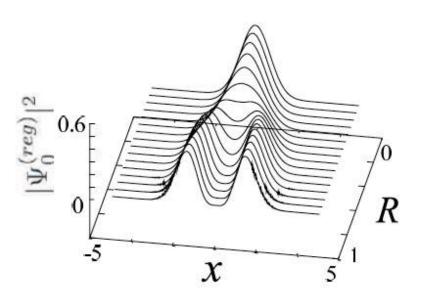
determine the auxiliary driving potential

Theory: Masuda & Nakamura 2008, 2010, 2011

Experiments: ???

Examples

Matter wave splitting

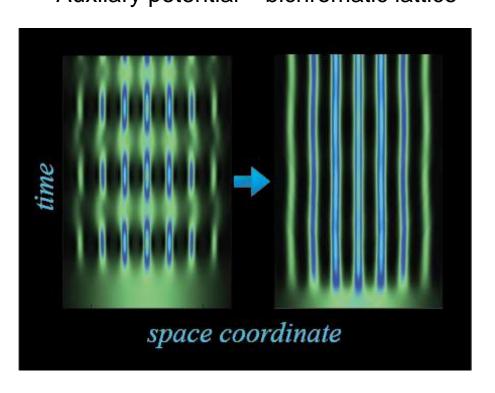


Masuda & Nakamura, Proc. R. Soc. A **466**, 1135 (2010)

Torrontegui et al

PRA **87**, 033630 (2013)

Ground-state loading in an optical lattice Auxliary potential ≈ bichromatic lattice



Masuda, Nakamura, del Campo PRL **113**, 063003 (2014)

 $V_{\text{app}}(q,t) = U_1(t)\sin^2(k_L q) + U_2(t)\sin^2(2k_L q)$

Fast-forward technique

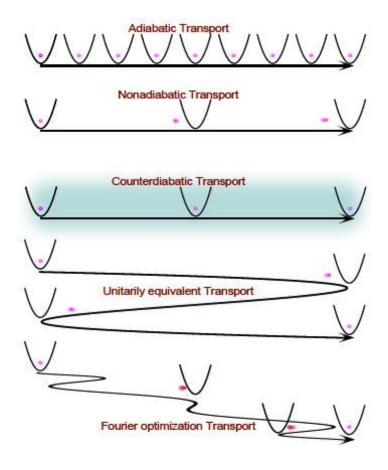
Scale invariance is kind of classical Really needed?

Protocols become energy/state dependent

Critical systems:
AdC, Rams, Zurek PRL **109**, 115703 (2012)
Saberi, Opatrný, Mølmer, AdC PRA **90**, 060301(R) (2014)
Optical lattices:

Masuda, Nakamura, AdC PRL 113, 063003 (2014)

Part II: Applications Shortcuts to adiabatic transport



Shuoming An, Dingshun Lv, AdC, Kihwan Kim, arXiv:1601.05551

Counterdiabatic transport

Transport of quantum fluids

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta^2 + U[\mathbf{r}_i - \mathbf{f}(t)] \right] + \sum_{i < j} V(\mathbf{r}_i - \mathbf{r}_j),$$

Scale-invariant evolution of an initial stationary state

$$\Phi(\mathbf{r}_1, \dots, \mathbf{r}_N; t) = e^{-i\mu t/\hbar} \Phi\left[\mathbf{r}_1 - \mathbf{f}(t), \dots, \mathbf{r}_N - \mathbf{f}(t); 0\right]$$

NONLOCAL counterdiabatic term

$$\hat{\mathcal{H}}_1 = -i\hbar \sum_{i=1}^N \dot{\mathbf{f}} \partial_{\mathbf{r}_i} = \sum_{i=1}^N \dot{\mathbf{f}} \cdot \mathbf{p}_i.$$

Counterdiabatic transport

Transport of quantum fluids

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \Delta^2 + U[\mathbf{r}_i - \mathbf{f}(t)] \right] + \sum_{i < j} V(\mathbf{r}_i - \mathbf{r}_j),$$

Scale-invariant evolution of an initial stationary state

$$\Phi({f r}_1,\ldots$$

Via unitary to

Single-particle:

S. Masuda, K. Nakamura, Proc. R. Soc. A 466, 1135 (2010)

E. Torrontegui et al, Phys. Rev. A83,013415 (2011).

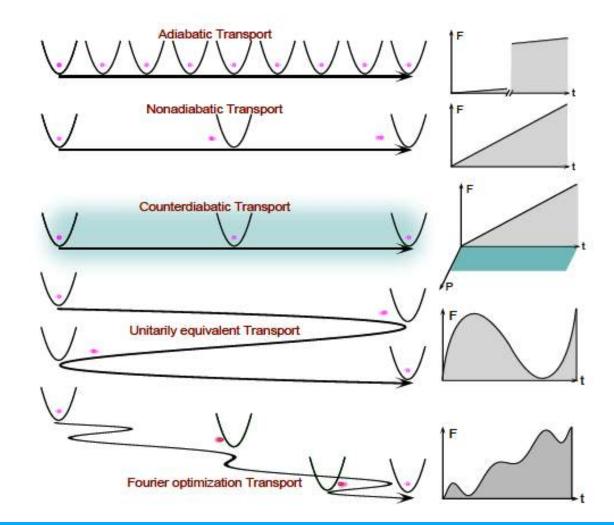
Many-particle:

S. Masuda, Phys. Rev. A 86, 063624 (2012)

$$\hat{\mathcal{H}}_{\mathrm{CD}} = \hat{\mathcal{H}} - \sum_{i=1}^{N} m\ddot{\mathbf{f}} \cdot \mathbf{r}_{i}$$

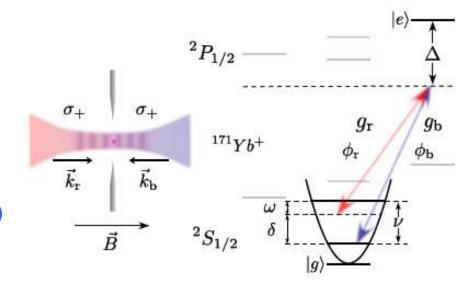
Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport

Shuoming An, Dingshun Lv, Adolfo del Campo, and Kihwan Kim Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China Department of Physics, University of Massachusetts, Boston, MA 02125, USA



Recipe for a dragged harmonic oscillator

- Single trapped ¹⁷¹Yb⁺ ion
- Raman beams exert the force
- **Dipole approximation**
- **Rotating Wave approximation (RWA)**
- Lamb-Dicke regime

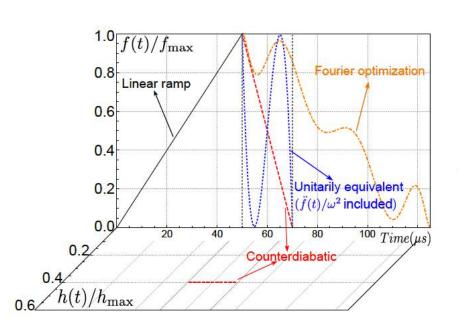


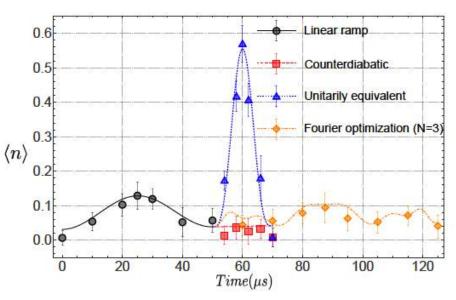
$$\hat{H}_{\text{eff}} = \hat{p}^2 / 2m + m\omega^2 \hat{x}^2 + f(t)\hat{x}$$
 $\hat{H}_{\text{CD}} = -\frac{f(t)}{m\omega^2}\hat{p}$

$$\hat{H}_{\mathrm{CD}} = -rac{f(t)}{m\omega^2}\hat{p}$$

$$\hat{H}_{\text{eff}} = f(t)x_0 \left(\hat{a}e^{-i(\omega t + \phi)} + \hat{a}^{\dagger}e^{+i(\omega t + \phi)}\right)$$

Comparison of transport protocols



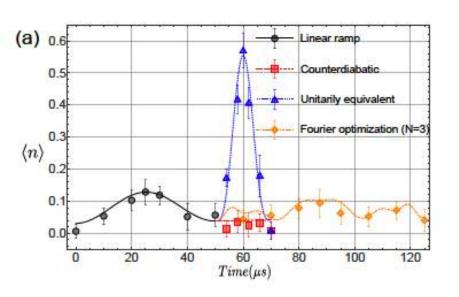


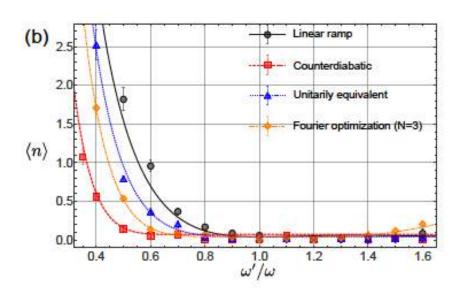
Supremacy of counterdiabatic driving

Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport

Shuoming An, Dingshun Lv, Adolfo del Campo, and Kihwan Kim Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China Department of Physics, University of Massachusetts, Boston, MA 02125, USA

Robustness against trap frequency errors





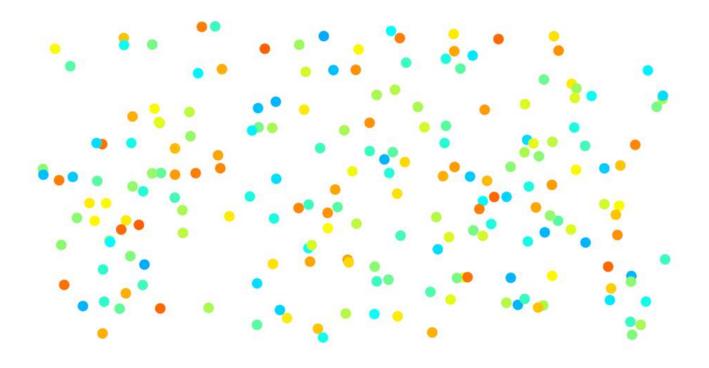
Supremacy of counterdiabatic driving

Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-ion Transport

Shuoming An, Dingshun Lv, Adolfo del Campo, and Kihwan Kim Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, People's Republic of China Department of Physics, University of Massachusetts, Boston, MA 02125, USA

Part II: Applications

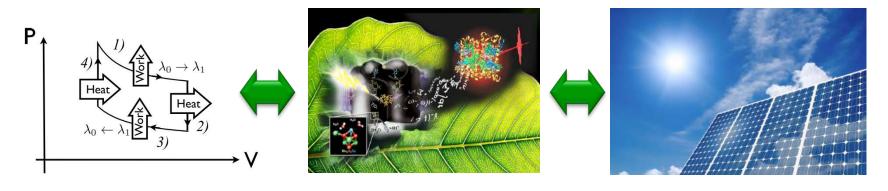
Shortcuts to adiabaticity in quantum thermodynamics



Quantum Heat Engines: Towards Green Quantum Energy

Optimal energy consumption and conversion

Equivalence Quantum engines & Photocells



Photosynthetic reaction center as a quantum heat engine

Konstantin E. Dorfman^{a,b,c,1}, Dmitri V. Voronine^{a,b,1}, Shaul Mukamel^c, and Marlan O. Scully^{a,b,d}

^aTexas A&M University, College Station, TX 77843-4242; ^bPrinceton University, Princeton, NJ 08544; ^cUniversity of California, Irvine, CA 92697-2025; and ^gBaylor University, Waco, TX 76798

PNAS

PRL 111, 253601 (2013)

PHYSICAL REVIEW LETTERS

week ending 20 DECEMBER 2013

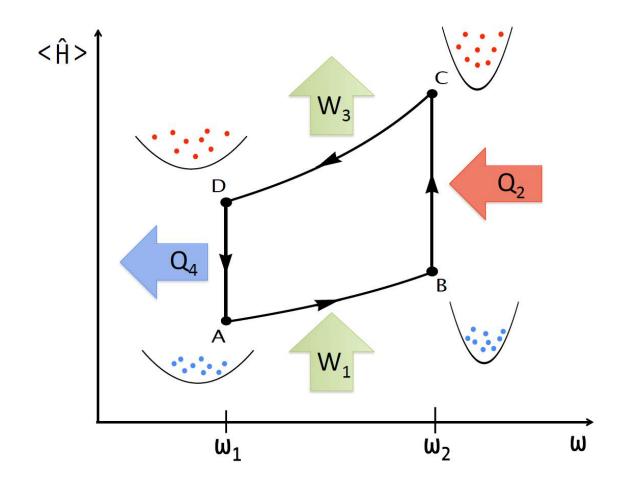
Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

C. Creatore, ^{1,*} M. A. Parker, ¹ S. Emmott, ² and A. W. Chin ¹

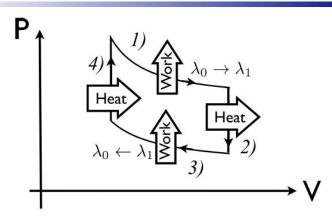
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

Microsoft Research, Cambridge CB1 2FB, United Kingdom

Quantum Heat Engines (e.g. Otto Cycle)



Efficiency vs Power



Quantum efficiency

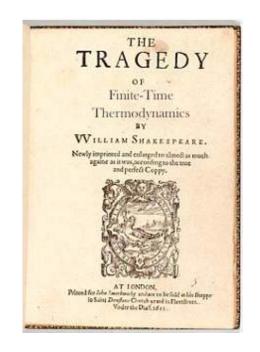
$$\eta = -\frac{\langle W_1 \rangle + \langle W_3 \rangle}{\langle Q_2 \rangle}$$

Nonadiabatic Efficiency e.g. of a single-particle Otto cycle

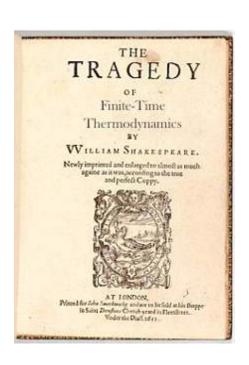
$$\eta = 1 - \frac{\omega_1}{\omega_2} f[\omega(t)] \le 1 - \frac{\omega_1}{\omega_2}$$

Essence of finite-time thermodynamics:

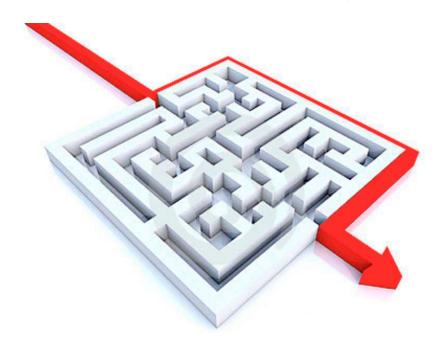
Trade-off between efficiency and power



Shortcuts as a way out of the tragedy



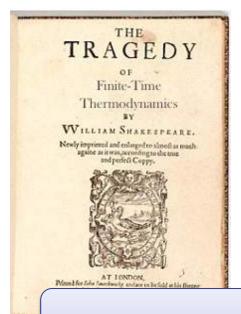
Shortcuts to adiabaticity

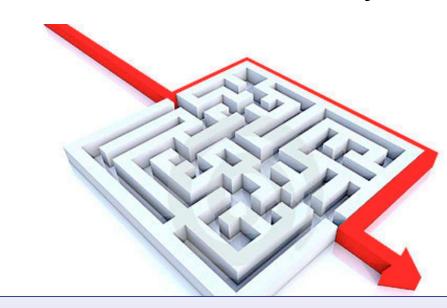


- AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle)
- M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle)

Shortcuts as a way out of the tragedy

Shortcuts to adiabaticity

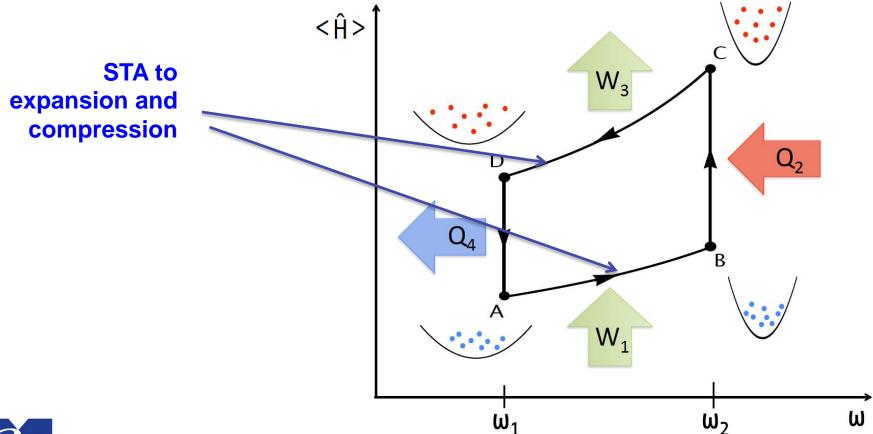




See too: J. Deng et al., Phys. Rev. E 88, 062122 (2013) (single-particle)

- AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle)
- M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle)

Quantum Heat Engines (e.g. Otto Cycle)



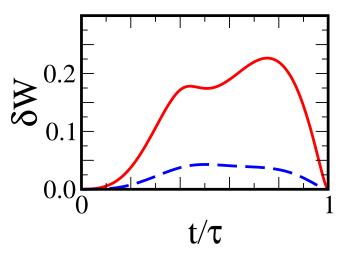
Superadiabatic quantum engine

Cycle with tunable power andmaximum efficiency (zero friction)

$$\mathcal{E}_{\max} = 1 - \frac{\omega(\tau)}{\omega(0)}$$

Initial state thermal

$$\delta W = \langle W \rangle - \langle W_{\text{ad}} \rangle = \frac{1}{\beta_t} S(\rho_t || \rho_t^{\text{ad}}), \qquad \rho_t^{\text{ad}} = \sum_n p_n^0 |n(t)\rangle \langle n(t)|$$

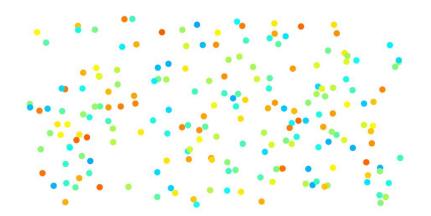


Many-particle QHE

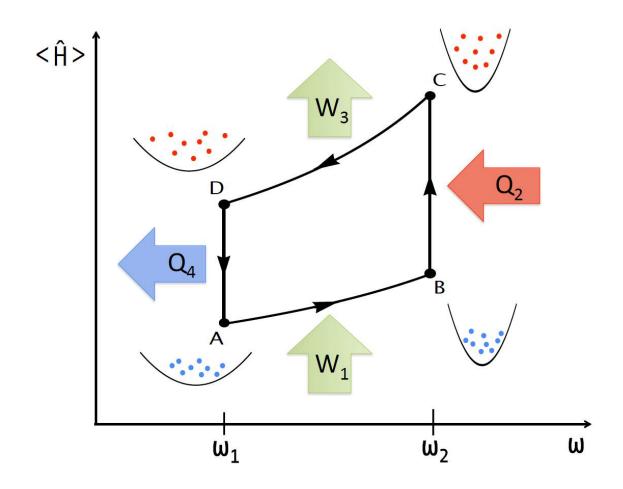
Single N-particle engine

vs N single-particle engines?

What substance is optimal as working medium?



Many-particle QHE (Otto cycle)



Example: interacting Bose gas as working medium

Working medium - interacting many-particles with tunable interactions

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + \frac{1}{2} m\omega(t)^2 x_i^2 \right] + \frac{\hbar^2}{m} \sum_{i < j=1}^{N} \frac{\lambda(\lambda - 1)}{(x_i - x_j)^2}$$

[1971: Calogero, J. Math. Phys. 12, 419; Sutherland, ibid 12, 246]

Example: interacting Bose gas as working medium

Working medium - interacting many-particles with tunable interactions

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + \frac{1}{2} m\omega(t)^2 x_i^2 \right] + \frac{\hbar^2}{m} \sum_{i < j=1}^{N} \frac{\lambda(\lambda - 1)}{(x_i - x_j)^2}$$

[1971: Calogero, J. Math. Phys. 12, 419; Sutherland, ibid 12, 246]

- Includes ideal bosons and hard-core bosons (= fermions) for λ =0,1
- ◆ Exact finite-time quantum thermodynamics no approximations
- Equivalent to ideal gas of particles obeying fractional exclusion [Murthy & Shankar PRL 73, 3331 (1994)]
- Universal behavior (Luttinger liquid) of 1D many-body systems
- Tunable zero-point energy + linear spectrum

$$E(\lbrace n_k \rbrace) = \frac{\hbar\omega}{2} N[1 + \lambda(N-1)] + \sum_{k=1}^{\infty} \hbar\omega k n_k$$

Quest for Quantum Supremacy

Comparison

VS

Worst case: sudden-quench limit (sq)

◆ Efficiency ratio at maximum power

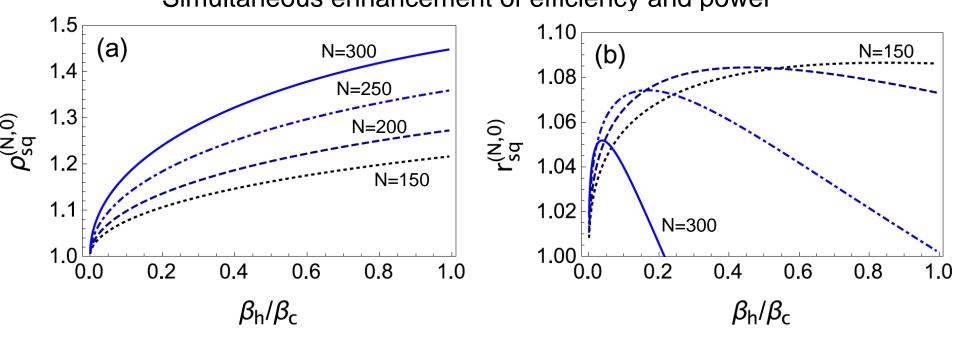
$$\rho_{\mathrm{sq}}^{(N)} := \frac{\eta_{\mathrm{sq}}^{(N)}}{\eta_{\mathrm{sq}}^{(1)}}$$

Power ratio

$$r_{\text{sq}}^{(N)} := \frac{P_{\text{sq}}^{(N)}}{NP_{\text{sq}}^{(1)}}$$

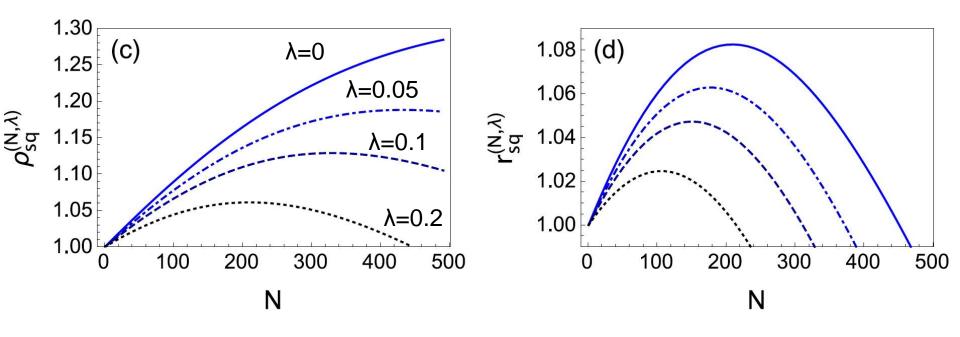
Quantum Supremacy: noninteracting case

Simultaneous enhancement of efficiency and power



Up to 50% efficiency enhancement

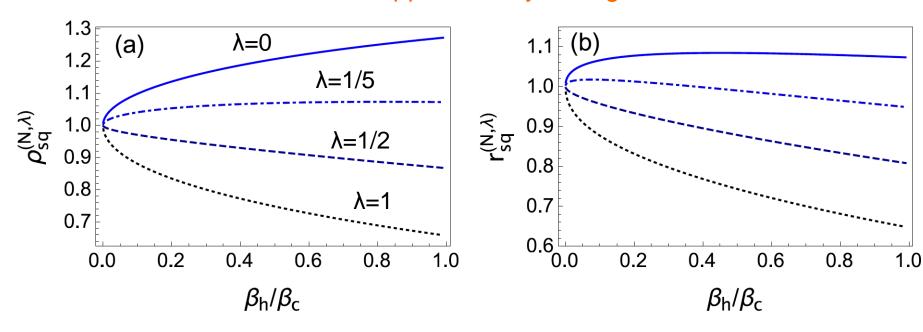
Quantum Supremacy: interacting case



Quantum Supremacy

Simultaneous enhancement of efficiency and power (N=200)

Caveat: QS suppressed by strong interactions



Summary

Shortcuts to adiabaticity speed up processes by tailoring excitations

- ◆ Three techniques:
 - (1) inverting scaling laws,
 - (2) counterdiabatic driving
 - (3) fast-forward
- Applications

Superadiabatic expansions/compressions
Experimental test of counterdiabatic driving: continuous variables
Supremacy of counterdiabatic transport
STA in Quantum Thermodynamics

The Group

Mathieu Beau (UMass)

Juan Jaramillo (UMass => NUS)

Anirban Dutta (UMass)

Suzanne Pittmann (UMass/Harvard)

Recent Collaborators

Aurelia Chenu (MIT)

Jianshu Cao (MIT)

Armin Rahmani (British Columbia)

Marek Rams (Jagiellonian)

Masoud Mohseni (Google)

Enrique Solano (Bilbao)

Wojciech Zurek (LANL)

Chuang-Fen Li (Hefei)

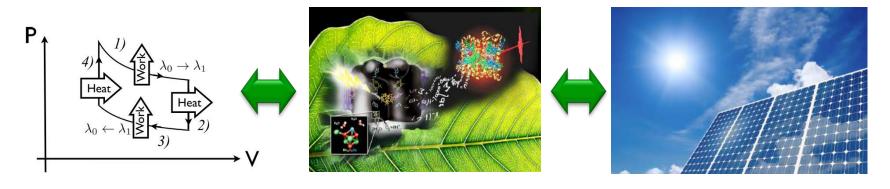
Guan-Can Guo (Hefei)

Thanks for your attention!!

Quantum Heat Engines: Towards Green Quantum Energy

Optimal energy consumption and conversion

Equivalence Quantum engines & Photocells



Photosynthetic reaction center as a quantum heat engine

Konstantin E. Dorfman^{a,b,c,1}, Dmitri V. Voronine^{a,b,1}, Shaul Mukamel^c, and Marlan O. Scully^{a,b,d}

³Texas A&M University, College Station, TX 77843-4242; ^bPrinceton University, Princeton, NJ 08544; ^cUniversity of California, Irvine, CA 92697-2025; and ^dBaylor University, Waco, TX 76798

PNAS

PRL 111, 253601 (2013)

PHYSICAL REVIEW LETTERS

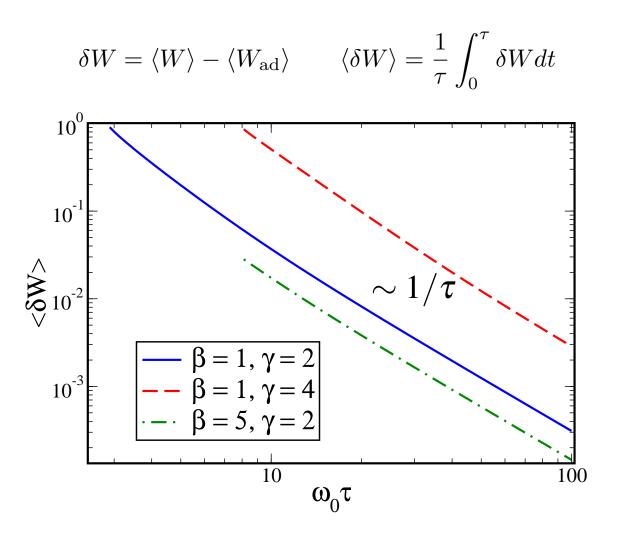
week ending 20 DECEMBER 2013

Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States

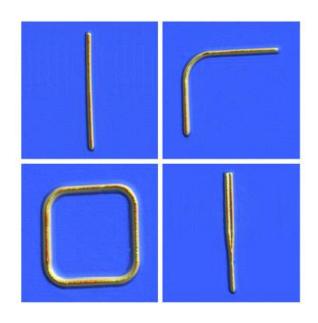
C. Creatore, ^{1,*} M. A. Parker, ¹ S. Emmott, ² and A. W. Chin ¹

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom ²Microsoft Research, Cambridge CB1 2FB, United Kingdom

Energy Cost of Shortcuts to Adiabaticity



Part III Design of bent waveguides Tailoring curvature effects



del Campo, Boshier, Saxena, Sci. Rep. **4**, 5274 (2014) Ryu & Boshier New J. Phys **17**, 092002 (2015)

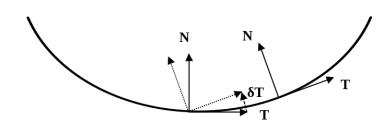
Curvature-induced potential (CIP)

- Waveguide with non-zero curvature
- Dimensional reduction of the Schrödinger equation under tight transverse confinement
- Emergence of quantum-mechanical local attractive potential

$$V_{\rm CIP}(q) = -\frac{\hbar^2}{8m} \kappa(q)^2$$

Curvature: rate of change of unit tangent vector $\ \kappa(q) = \left\| rac{d\mathbf{T}}{dq} \right\|$

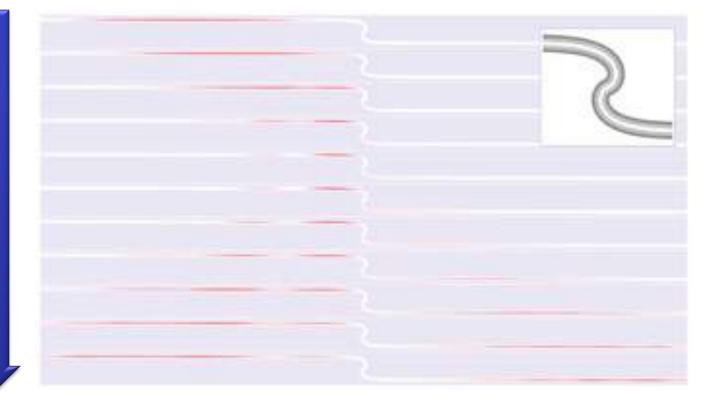
Switkes, Russel & Skinner, J. Chem. Phys. **67**, 3061(1977) da Costa, Phys. Rev. A **23**, 1982 (1981) Exner & Seba, J. Math. Phys. **30**, 2574 (1989)



Curvature effects in atomtronics

Curvature affects scattering properties in atom circuits

Example: wavepacket splitting



time

Supersymmetric quantum mechanics identifies families of reflectionless potentials

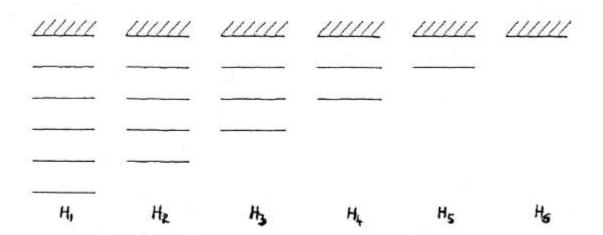


FIGURE 2. Schematic diagram of the eigenvalue spectra of the Hamiltonians in the hierarchy H_n . The number of bound states of H_1 is arbitrarily chosen to be 5.

SUSY partner Hamiltonians share scattering properties

Supersymmetric quantum mechanics identifies families of reflectionless potentials

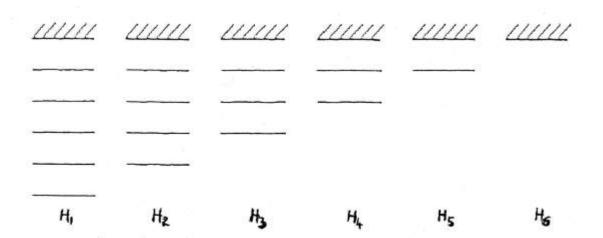


FIGURE 2. Schematic diagram of the eigenvalue spectra of the Hamiltonians in the hierarchy H_n . The number of bound states of H_1 is arbitrarily chosen to be 5.

SUSY partner Hamiltonians share scattering properties

Idea:

Design waveguides with a curvature-induced potential that is SUSY partners of V=0 (free dynamics/straight waveguide) Reflectionless bent waveguides with unit transmission probability

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274 (2014)

Supersymmetric quantum mechanics identifies families of reflectionless potentials

Unit transmission probability at any energy

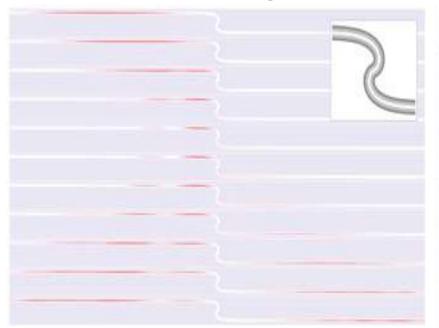
Curvature relation between SUSY waveguides

$$\kappa_{+}^{2}(q) = \kappa_{-}^{2}(q) + 8 \left[\frac{\partial_{q}^{2} \psi_{0}}{\psi_{0}} - \left(\frac{\partial_{q} \psi_{0}}{\psi_{0}} \right)^{2} \right].$$

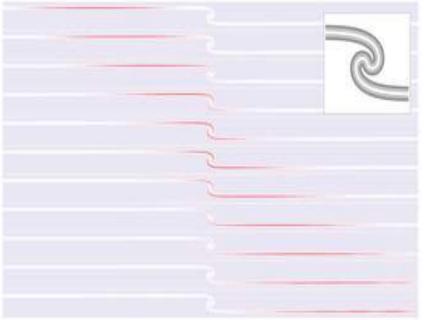
- Curvature specifies uniquely the waveguide shape (Frenet-Serret equations)
- Choose curvature to make CIP reflectionless, isospectral to straight waveguide

- Supersymmetric quantum mechanics identifies families of reflectionless potentials
- Choose curvature to make CIP reflectionless

Curved waveguide



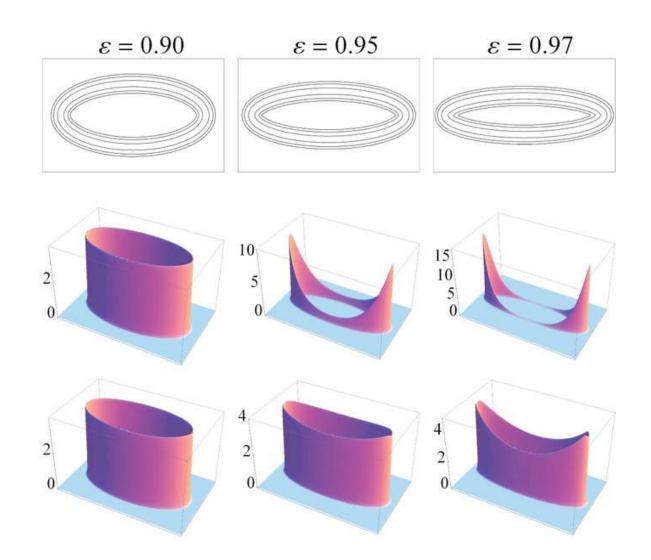
Curved SUSY waveguide



isospectral to straight waveguide

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274 (2014)

Curvature-induced effects: Elliptical waveguide potentials



del Campo, Boshier, Saxena, Sci. Rep. 4, 5274 (2014)

Quantum carpets: Elliptical waveguide potentials

Released localized wavepacket Talbot oscillations in the density profile

- a) Periodic pattern in the density profile in a ring trap [see Friesch et al. New J. Phys. 2, 4 (2000)]
- a) Suppressed by curvature in elliptical trap t/τ_R
- b) Recovered in elliptical trap with cancelled curvature-induced potential: isospectral to ring trap

