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Consider driving a system Hamiltonian 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

Adiabatic dynamics 

Ĥ0(t)|n(t)� = En(t)|n(t)�
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 Born, Fock (1928); Kato, J. Phys.  Soc. Jap. 5, 435 (1950), Avron & Elgart (1999) 



Consider driving a system Hamiltonian 

 

 

Write the adiabatic approximation 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

Adiabatic dynamics 
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Consider driving a system Hamiltonian 

 

 

Write the adiabatic approximation 

 

 

 

Approximate solution of the TDSE 

 

 

 

Under SLOW driving  

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

Adiabatic dynamics 
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i~@t| n(t)i ⇡ Ĥ(t)| n(t)i

 Born, Fock (1928); Kato, J. Phys.  Soc. Jap. 5, 435 (1950), Avron & Elgart (1999) 
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Adiabatic dynamics 

 
Slow driving of a system 

  
Provides good control 

 
 No excitations 

 
 

So, why shortcuts? 
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    Well … 

Quantum Simulation 
& Condensed Matter 

defect suppression 
 
 
 
 
 
 
 

Adiabatic Quantum 
Computation 

 

Quantum 
thermodynamics 
energy conversion  

ground state cooling 

Quantum Information 
Quantum Optics 

decoherence, noise 
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Shortcuts to adiabaticity 

 
Fast non-adiabatic process that mimics adiabatic dynamics 

e.g. to prepare a state   
 

             [Review: Adv. At. Mol. Opt. Phys. 62, 117 (2013)] 

Processes: Expansion, transport, splitting, adiabatic passage, phase transitions, … 
 
Systems: ultracold atoms, ions chains, quantum dots, spin systems, NVC, … 
 
Experiments: Nice, NIST, Mainz, PTB, MPQ, Florence, Trento, Tsukuba, … 
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Loading optical lattice 

Masuda, Nakamura, AdC PRL 113, 063003 (2014) 

Adolfo del Campo 

Transport 
Deffner, Jarzynski, AdC PRX 4, 021013 (2014) 
An,  Lv, AdC, Kihwan Kim,  arXiv:1601.05551  

 

Adiabatic crossing of  
quantum phase transition 

AdC, Rams, Zurek PRL 109, 115703 (2012) 
 Saberi, Opatrný, Mølmer, AdC, PRA 90, 060301(R)  

AdC & Sengupta, EPJ ST 224, 189 (2015) 
Rams, Mohseni, AdC, TBS (2015) 

 

Topological Defect suppression  
AdC et al. PRL105, 075701 (2010)  
AdC et al. NJP 13, 083022 (2011) 

Pyka et al. Nat. Commun. 4, 2291 (2013) 
AdC, Kibble, Zurek, JPCM 25, 404210 (2013) 

AdC & Zurek Int. J. Mod. Phys. A 29, 1430018 (2014) 

Quantum microscopy 
AdC, EPL 96, 60005 (2011) 

AdC, PRA 84, 031606(R) (2011) 
AdC, PRL 111, 100502 (2013) 

 
Quantum thermodynamics 
Chen et al, PRL 104, 063002 (2010) 

AdC & Boshier, Sci. Rep. 2, 648 (2012) 
AdC, Goold, Paternostro Sci. Rep. 4, 6208 (2014) 
Jaramillo, Beau, AdC, arXiv:1510.04633 (2016) 
Beau, Jaramillo, AdC, Entropy 18, 168 (2016)  

And  many other applications 
(chemical rate processes, quantum logic gates,  soliton dynamics, atom interferometry, …)  

Shortcuts to adiabaticity 



Inverting Scaling Laws 
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Inverting Scaling Laws 
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Standard expansion 

    Opening the trap 
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Standard expansion 

 Excitation of the breathing mode of the cloud 

    Opening the trap 

    from sudden to adiabatic 

: width of the cloud 
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1. Consider a time-dependent Hamiltonian harmonic oscillator 

 

 

 

 

2. Impose a self-similar dynamical ansatz 

 

 

 

3. Get the consistency equation: scaling factor as function of trap frequency 

 

 

 

 

 

 

 

 

 

 

 

Self-similar dynamics 

Lewis & Riesenfeld J. Math. Phys. 10,1458 (1969) 
Chen et al., Phys. Rev. Lett. 104, 063002 (2010) 
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1. Take a somewhat general many-body time-dependent Hamiltonian 

 

 

 

 

   With a potential satisfying 

 

2. Impose a self-similar dynamical ansatz 

 

 

 

3. Get the consistency equations, i.e. 

 

 

 

 

 

 

 

 

 

 

 

 

Self-similar dynamics 

 
del Campo, PRA 84, 031606(R) (2011); PRL 111, 100502 (2013) 
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1. Force the scaling ansatz to reduce to the initial and final states considered                                    

      

 Boundary conditions: 

 

 

2. Determine an ansatz for the scaling factor (e.g. a polynomial) 

 

 

3. Find the driving frequency and coupling strength from the consistency 

equations 

 

 

 

 
 
 
 

Design of a shortcut to adiabaticity 

Chen et al. Phys. Rev. Lett. 104, 063002 (2010) 
del Campo, PRA 84, 031606(R) (2011) 
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Time Evolution: 

Hzf πω 25.2 ×=

Hzπω 22500 ×=

mst f 2=

2Ψ(t,x)

2V(t,x)

Example 
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Time Evolution: 

Hzf πω 25.2 ×=

Hzπω 22500 ×=

mst f 2=

2Ψ(t,x)

2V(t,x)

Example 
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Experiments: Thermal cloud, BEC and 1D Bose gas 

Shortcut     vs      standard expansion 

 
Experiments: 1D Bose gas 
Rohringer et al. Sci. Rep. 5, 9820 (2015) 
Experiments: mean-field BEC 
J.-F. Schaff et al. EPL 93, 23001 (2011)  
Experiments: single-particle  
J.-F. Schaff et al. Phys. Rev. A 82, 033430 (2010) 
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Theory (quantum fluids)  
Chen et al.  PRL 104, 063002 (2010)  
AdC PRA 84, 031606(R) (2011) 
AdC PRL 111, 100502 (2013) 
  

 



Nonharmonic traps? Boxes? 

UT Austin all optical box  
at Raizen’s Lab   
PRA, 71, 041604(R) (2005).  
 
Cambridge’s boxes 
A.  L. Gaunt, Z. Hadzibabic,  
Sci. Rep. 2, 721 (2012) 

Boshier’s group at LANL 
New J. Phys. 11, 043030 (2009) 
 
 
 
+ implementations in atom chips 
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Quantum Piston 
AdC & Boshier, Sci. Rep 2, 648 (2012) 

AdC, PRL 111, 100502 (2013) 

!  Condensed'ma*er/quantum'simula2on:'Defect'suppression'

! 'Classical'&'Quantum'thermodynamics:'cooling,'engines'

! 'Quantum'informa2on'&'op2cs:'decoherence,'noise'

Shortcuts'to'adiab2city'(STA):'
Fast'nonEadiaba2c'processes'that'mimic'adiaba2c'dynamics''

by'controlling'excita2ons'

!!normal!expansion!!!!!!!!!!!shortcut!to!adiaba3city!!!
Quantum!Piston!!
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Counterdiabatic driving 
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Consider driving a system Hamiltonian 

 

 

Write the adiabatic approximation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Counterdiabatic driving 

Ĥ0(t)|n(t)� = En(t)|n(t)�
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Consider driving a system Hamiltonian 

 

 

Write the adiabatic approximation 

 

 

 

Is there a Hamiltonian for which the adiabatic approximation is exact? 

 

 

 

 

 

 

 

 

 

 

 

 

Counterdiabatic driving 

Ĥ0(t)|n(t)� = En(t)|n(t)�
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Consider driving a system Hamiltonian 

 

 

Write the adiabatic approximation 

 

 

 

Is there a Hamiltonian for which the adiabatic approximation is exact? 

 

 

 

Yes, indeed! 

 

 

 

 

 

 

 

 

 

Counterdiabatic driving 
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Is there a Hamiltonian for which the adiabatic approximation is exact? 

 

 

 

Yes, indeed! 

 

 

 

 

 

 

 

 

 

Counterdiabatic driving 

Ĥ(t) ⌘ Ĥ0(t) + Ĥ1(t)

i~⇥t|�n(t)� = Ĥ(t)|�n(t)�

Ĥ1(t) = i~
X

n 6=m

X

m

|m⇤⇥m|�tĤ0|n⇤⇥n|
En(t)� Em(t)

Theory: Demirplak & Rice 2003; = M. V. Berry 2009 “Transitionless quantum driving” 
 CD inspired experiment for TLS:  Morsch’s group Nature Phys. 2012; NVC: Suter’s  group PRL 2013 
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Counterdiabatic terms are often nonlocal 

 

Search for experimentally-realizable local Unitarily equivalent Hamiltonians  

 

 

 

RAP in Two level system (spin flip) 

                                             

 

Time-dependent harmonic oscillator 

 

 

Transport of matter waves 

 

 

 

 

 

 

 

 

 

 

 

 

Counterdiabatic driving: applications 

Theory: Demirplak & Rice 2003; M. V. Berry 2009 
Experiment for TLS:  Morsch’s group Nature Phys. 2012; NVC: Suter’s  group PRL 2013 

Ĥ1 / p Ĥ 0
1 / x

Ĥ1 / (xp+ px) Ĥ 0
1 / x2

Ĥ1 / �y Ĥ 0
1 / �z

Ĥ � = UĤU † � i~U�tU
†

Demirplak & Rice 2003         Bason et al 2012 

Muga el at 2010, Jarzynski 2013                Ibáñez et al 12, AdC 13 

Deffner-Jarzynski-AdC  14 
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Quantum gases 

Interacting quantum fluids 
 
 
 
 
 
Scaling-invariant dynamics when  
 
 
 
 
 
 
 
 
 
 

V (�r) = ��2V (r)

Ĥ =
NX

i=1


� ~2
2m

r2 +
1

2
m!(t)2r2i

�
+

X

i<j

V (ri � rj)

A. del Campo, PRL 111, 100502 (2013) 
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Quantum gases 

Interacting quantum fluids 
 
 
 
 
 
 
Counterdiabatic  
Driving? 
 
 
 

 
Spectral properties unavailable, even by numerical methods 
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More general case 
 
 
        
 
 
 
 
 
 

Ĥ0(t) =
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Quantum gases 

A. del Campo, PRL 111, 100502 (2013) 
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Quantum gases 

More general case 
 
        
 
 
 
 
 
Scaling ansatz 
 
 
 
 
Nonlocal auxiliary Hamiltonian 
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A. del Campo, PRL 111, 100502 (2013) 
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Quantum gases 

More general case 
 
        
 
 
 
 
 
Scaling ansatz 
 
 
Unitary transformation  
 
LOCAL auxiliary Hamiltonian 
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A. del Campo, PRL 111, 100502 (2013) 
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Quantum fluids: scaling laws  & counterdiabatic driving 

Family of interacting quantum fluids 
 
 
 
 
 
Scaling-invariant dynamics when  
 
Shortcut to adiabaticity = Fast motion video of adiabatic dynamics 
 
Auxiliary Counterdiabatic Control => harmonic trap 
 
 
        
 
 
 
 
 
 
 

A. del Campo, PRL 111, 100502 (2013) 
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Counterdiabatic driving: Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
CD for 2 & 3 Level systems 

CD for systems with Continuous Variables 
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Fast-forward technique 

Theory: Masuda & Nakamura 2008, 2010, 2011 
Experiments:  ??? 

 
Scale invariance is kind of classical 

  
Really needed? 
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Consider the dynamics (mean-field) 

 

 

Ansatz for the evolution 

 

 

where 

 

 

 

Fast-forward technique 

Theory: Masuda & Nakamura 2008, 2010, 2011 
Experiments:  ??? 

i~�t� = � ~2
2m

⇥2�+ (V + Vau)�+ g|�|2�,

�(q, t) = �[q, R(t)]ei�(q,t)e�
i
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R t
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� ~2
2m

⇥2� + V� + g|�|2� = µ�.
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Consider the dynamics (mean-field) 

 

 

Ansatz for the evolution 

 

 

where 

 

Substituting ansatz, separating real and imaginary parts 

 

 

 

 

                                   

                                 determine the auxiliary driving potential 

 

 

 

Fast-forward technique 

Theory: Masuda & Nakamura 2008, 2010, 2011 
Experiments:  ??? 

i~�t� = � ~2
2m

⇥2�+ (V + Vau)�+ g|�|2�,

�(q, t) = �[q, R(t)]ei�(q,t)e�
i
~
R t
0 µ[R(t0)]dt0

� ~2
2m

⇥2� + V� + g|�|2� = µ�.

Vau(q, t) = � ~2
2m

(⇥�)2 � ~⇥t�

�2�+ 2� ln⇥ ·��+
2m
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Examples 

Matter wave splitting 
 
 

Ground-state loading in an optical lattice 
Auxliary potential ≈ bichromatic lattice 

 

Masuda, Nakamura, del Campo 
PRL 113, 063003 (2014)  

Masuda & Nakamura, 
Proc. R. Soc. A 466, 1135  (2010) 
Torrontegui et al 
PRA 87, 033630 (2013)   
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Fast-forward technique 

 
Scale invariance is kind of classical 

  
Really needed? 

 
 
 
 
 
 

                 Protocols become energy/state dependent 
 
 

 

     

Critical systems: 
AdC, Rams, Zurek  PRL 109, 115703 (2012) 

Saberi,  Opatrný, Mølmer, AdC  PRA 90, 060301(R) (2014) 
Optical lattices: 

 Masuda, Nakamura, AdC PRL 113, 063003 (2014)   
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Part II: Applications 
Shortcuts to adiabatic transport 

Adolfo del Campo:   adolfo.delcampo@umb.edu 

Shuoming An, Dingshun Lv, AdC, Kihwan Kim,  arXiv:1601.05551 



Counterdiabatic transport 

Transport of quantum fluids 
 
 
 
 
 
Scale-invariant evolution of an initial stationary state 
 
 
 
 
 
NONLOCAL counterdiabatic term 
 
 
 
 
 
 
 
 
 
 

S. Deffner, C. Jarzynski, A. del Campo, PRX 4, 021013 (2014) 

Ĥ =
NX
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h
� ~2

2m
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i
+

X
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Ĥ1 = �i~
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ḟ@ri =
NX

i=1

ḟ · pi.
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Counterdiabatic transport 

Transport of quantum fluids 
 
 
 
 
 
Scale-invariant evolution of an initial stationary state 
 
 
 
 
LOCAL CD term  
via unitary transformation 
 
 
 
 
 
 
 
 
 
 

Ĥ =
NX

i=1

h
� ~2

2m
�2 + U [ri � f(t)]

i
+

X

i<j

V (ri � rj),

�(r1, . . . , rN ; t) = e�iµt/~� [r1 � f(t), . . . , rN � f(t); 0]

U = exp

⇢
im

~
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m

2

Z t

0

˙f(t0)2dt0
�

ĤCD =Ĥ�
NX

i=1

mf̈ · ri

S. Deffner, C. Jarzynski, A. del Campo, PRX 4, 021013 (2014) 

Single-particle: 
S. Masuda, K. Nakamura, Proc. R. Soc. A 466, 1135 (2010) 
E. Torrontegui et al, Phys.  Rev.  A83,013415 (2011). 
Many-particle: 
S. Masuda, Phys. Rev. A 86, 063624 (2012) 
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Theory (quantum fluids)  
Salamon et al., PCCP 21,1027 (2009) 
Chen et al.  PRL 104, 063002 (2010)  
AdC PRA 84, 031606(R) (2011) 
AdC PRL 111, 100502 (2013) 
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•  Single trapped 171Yb+ ion 
 
•  Raman beams exert the force 
 
•  Dipole approximation 
 
•  Rotating Wave approximation (RWA) 
 
•  Lamb-Dicke regime 
  
 
Ĥe↵ = p̂2/2m+m!2x̂2 + f(t)x̂

Ĥe↵ = f(t)x0

⇣
âe�i(!t+� + â†e+i(!t+�

⌘

Recipe for a dragged harmonic oscillator  

ĤCD = � ḟ(t)

m!2
p̂
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Theory (quantum fluids)  
Salamon et al., PCCP 21,1027 (2009) 
Chen et al.  PRL 104, 063002 (2010)  
AdC PRA 84, 031606(R) (2011) 
AdC PRL 111, 100502 (2013) 
  
 

Comparison of transport protocols 

Supremacy of counterdiabatic driving 
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Theory (quantum fluids)  
Salamon et al., PCCP 21,1027 (2009) 
Chen et al.  PRL 104, 063002 (2010)  
AdC PRA 84, 031606(R) (2011) 
AdC PRL 111, 100502 (2013) 
  
 

Robustness against trap frequency errors 

Supremacy of counterdiabatic driving 



 
  

Part II: Applications 
Shortcuts to adiabaticity  

in quantum thermodynamics 
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Quantum Heat Engines: Towards Green Quantum Energy 

Optimal energy consumption and conversion 
 
 

Equivalence Quantum engines & Photocells 
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Quantum Heat Engines (e.g. Otto Cycle) 
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Efficiency vs Power 
Quantum efficiency 

Nonadiabatic Efficiency e.g.  of a single-particle Otto cycle 
 
 
 
 
 

      Essence of finite-time thermodynamics: 
 

     Trade-off between efficiency and power 

Adolfo del Campo:   adolfo.delcampo@umb.edu 

⌘ = 1� !1

!2
f [!(t)]  1� !1

!2

⌘ = �hW1i+ hW3i
hQ2i



Shortcuts as a way out of the tragedy 

Shortcuts to adiabaticity 

For a complementary approach:  
D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. E 87, 012140 (2013) 
For  related approach: 
 

•  AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014) (single-particle) 

•  M. Beau, J. Jaramillo, AdC, Entropy 18, 168 (2016) (many-particle) 
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See too: J. Deng et al., Phys. Rev. E 88, 062122 (2013) (single-particle) 
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which can be recast as DSirr = S(rt ||req
t ) [22] with

S(rA||rB) = Tr(rAlnrA � rAlnrB) the relative entropy be-
tween two density matrices rA and rB [23], rt the time-
evolving state, and req

t = e�bĤ (t)/Tr[e�bĤ (t)] the corre-
sponding equilibrium reference state at the initial temperature
1/b . Here, hWirri quantifies the degree of friction caused by
the finite-time protocol on the expansion or compression stage
of the engine cycle at hand. When a bath is reconnected this
friction is manifested by dissipation into the bath and hence
the decrease in the overall efficiency of the motor. For sim-
plicity and for the point of demonstration we allow only this
form of irreversibility in our engine cycle although in princi-
ple the same analysis can be done for fluctuating heat flows
[24, 25].

III. FRICTION-FREE FINITE-TIME ENGINE

Recently there has been a significant amount of work de-
voted to the design of so-called super-adiabatic protocols, i.e.
shortcuts to states which are usually reached by slow adia-
batic processes [6, 7, 9]. A typical approach for shortcuts
to adiabaticity is to use ad hoc dynamical invariants to engi-
neer a Hamiltonian model that connects a specific eigenstate
of a model from an initial to a final configuration determined
by a dynamical process. Here we will rely on an approach
based on engineered non-adiabatic dynamics achieved using
self-similar transformations [8, 26].

Let us consider a quantum harmonic oscillator with time-
dependent frequency w(t) as the working medium of the en-
gine cycle [8]. The Hamiltonian model that we consider is
thus Ĥ (t) = Ĥ [w(t)] = p̂2/(2m) + mw2(t)x̂2/2, where x̂
and p̂ are the position and momentum operators of an oscil-
lator of mass m. Inspired by the scheme put forward in [19],
we will use the tunable harmonic frequency to implement the
compression and expansion steps of the Otto cycle. In line
with the experimental proposal for the realisation of a mi-
croscopic Otto motor put forward in [19], the frequency of
the harmonic trap embodies the volume of the chamber into
which the working medium is placed, while the correspond-
ing pressure is defined in terms of the change of energy per
unit frequency.

Needless to say, in the compression or expansion stage of
the Otto cycle, the frequency of the trap will have to be varied,
so that w(t) takes here the role of the work parameter l (t) in-
troduced when discussing FTs. We now suppose to subject the
working medium to a change in the work parameter occurring
in a time t and corresponding to, say, one of the friction-prone
steps of the Otto cycle. Our goal is to design an appropriate
shortcut to adiabaticity to arrange for a fast, frictionless evo-
lution between the equilibrium configuration of the working
medium at t = 0 and that at t = t . In order to do this, we re-
mind that the wavefunction fn(x, t = 0) = hx|n(0)i of an initial
eigenstate |n(0)i of Ĥ (0) is known to follow the self-similar
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FIG. 2: Work fluctuations along a shortcuts to an adiabaticity ex-
pansion. (a) Average work; (b) Standard deviation of the work; (c)
Nonequilibrium deviations from the adiabatic average mean work;
(d) We show S(rt ||req

t )/b (•) and S(rad
t ||req

t )/b (⇧) [cf. Eq. (9)]
for the same processes shown in the other panels. All quantities are
plotted in units of h̄w0 (b = 1).

evolution [8]

fn(x, t)=
1p
b(t)

exp
✓

i
mḃ(t)x2

2h̄b(t)
� i

en(0)h(t)
h̄

◆
hx/b(t)|n(0)i,

(6)
where h(t) =

R t
0 dt 0/b2(t 0), en(0) is the energy of the eigen-

state being considered at t = 0, and the scaling factor b is the
solution of the Ermakov equation

b̈(t)+w2(t)b2(t) = w2
0/b3, (7)

with the initial conditions b(0) = 1 and ḃ(0) = 0. The short-
cut to adiabaticity that we seek is then found by inverting
the Ermakov equation and complementing the previous set
of boundary conditions with ḃ(0) = b̈(0) = ḃ(t) = b̈(t) = 0,
and b(t) =

p
w0/w f with w0 = w(0) and w f = w(t). In-

stances of solutions to this problem can be found as illustrated
in the Appendix, where we give the explicit form of the scal-
ing factor b(t) such that the finite-time dynamics that takes
the initial state fn(x, t = 0) = hx|n(0)i to the final one fn(x, t =
t) = hx|n(t)i= hx/b(t)|n(t = 0)i/

p
b(t) actually mimics the

wanted adiabatic evolution (albeit for any t 2 (0,t), fn(x, t) is
in general different from the eigenstate |n(t)i of Ĥ (t)). The
choice of a harmonic oscillator is not a unique example as
similar self-similar dynamics can be induced in a large fam-
ily of many-body systems [26] and other trapping potentials,
such as a quantum piston [27].

Let us consider the fluctuations induced in the expansion
and compression stages of the Otto cycle when the above
shortcut to adiabaticity is implemented. Let us consider a
driving Hamiltonian with instantaneous eigenstates |n(t)i and
eigenvalues en(t). In the adiabatic limit, the corresponding
transition probabilities pt

nk tend to |hn(t)|k(t)i|2 = dk,n(t) for
all t 2 [0,t]. The average work simplifies then to hWad(t)i =
Ân[en(t)� en(0)]pn =

h̄[w(t)�w0]
2 coth b h̄w0

2 . On the other hand,

�W = hW i � hWadi =
1

�t
S(⇢t||⇢adt ), �t = �0✏n(0)/✏n(t)

E
max

= 1� !(⌧)

!(0)

⇢adt =
X

n

p0n|n(t)ihn(t)|
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Many-particle QHE 
 

Single N-particle engine       vs       N single-particle engines? 
 

                                                                                         … 
                                             
  
             What substance is optimal  as working medium? 
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Many-particle QHE (Otto cycle) 
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Example: interacting Bose gas as working medium 
 
Working medium - interacting many-particles with tunable interactions 
 
 
 
 

[1971: Calogero, J. Math. Phys. 12, 419;  Sutherland, ibid 12, 246] 
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Example: interacting Bose gas as working medium 
 
Working medium - interacting many-particles with tunable interactions 
 
 
 
 

[1971: Calogero, J. Math. Phys. 12, 419;  Sutherland, ibid 12, 246] 
 

u  Includes ideal bosons and hard-core bosons (= fermions) for λ=0,1 

u  Exact finite-time quantum thermodynamics – no approximations 

u  Equivalent to ideal gas of particles obeying fractional exclusion 
                 [Murthy & Shankar PRL 73, 3331 (1994)] 

 
u  Universal behavior (Luttinger liquid) of 1D many-body systems 

 
u  Tunable zero-point energy + linear spectrum  
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Quest for Quantum Supremacy 
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Comparison                                       vs                                  … 
 

Worst case: sudden-quench limit (sq) 
 

u  Efficiency ratio at maximum power  
 
 
 
 
 
 

u  Power ratio 
 
 
 
 

r(N)
sq :=

P (N)
sq

NP (1)
sq

⇢(N)
sq :=

⌘(N)
sq

⌘(1)sq



Quantum Supremacy: noninteracting case 
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Simultaneous enhancement of efficiency and power 

 
 
 
 
 
 
 
 
 
 
 
Up to 50% efficiency enhancement 
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Quantum Supremacy: interacting case 
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Quantum Supremacy 
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Simultaneous enhancement of efficiency and power (N=200) 

Caveat: QS suppressed by strong interactions 
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λ=1/2 
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Summary 

Shortcuts to adiabaticity speed up processes by tailoring excitations 
 
 

u Three techniques:  
 (1) inverting scaling laws,  
 (2) counterdiabatic driving  

  (3) fast-forward 
 
u Applications 

 Superadiabatic expansions/compressions 
 Experimental test of counterdiabatic driving: continuous variables 
 Supremacy of counterdiabatic transport 
 STA in Quantum Thermodynamics 
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Quantum Heat Engines: Towards Green Quantum Energy 

Optimal energy consumption and conversion 
 
 

Equivalence Quantum engines & Photocells 
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Energy Cost of Shortcuts to Adiabaticity 

4

in a shortcut to adiabaticity, only the weaker condition pt
nk =

|hfn(t)|k(t)i|2 ! dk,n(t ! 0,t) holds. For the time-dependent
harmonic oscillator, it follows that

hW i= h̄
2


ḃ2(t)+w2(t)b2(t)+w2

0/b2(t)
2w0

�w0

�
coth

b h̄w0

2
.(8)

In the adiabatic limit ḃ(t) ! 0 and b(t) ! bad(t) =
[w2

0/w2(t)]1/4.
Figure 2(a) shows that the average work hW i along a short-

cut to an adiabatic expansion in comparison with in the cor-
responding adiabatic processes hWad(t)i (the behaviour ob-
served during a shortcut to a compression is mirrored in time).
It is very important to stress that hW i is the work done on ei-
ther adiabat until the reconnection with the bath, i.e. just prior
to the isochoric heating or cooling stage. The standard devi-
ation of the work distribution DW = [hW 2i� hW i2]1/2 is dis-
played in Fig. 2(b). In turn, this provides a further characteri-
sation of the work fluctuations along the shortcut through the
width of P(W ; t). It is interesting to notice that upon comple-
tion of the stroke, the non-equilibrium deviation of both the
average work and the standard deviation from the adiabatic
trajectory disappear.

We shall now analyse the non-equilibrium deviation dW =
hW i � hWad(t)i with respect to the adiabatic work hWad(t)i.
Note that this expression is equivalent to the deviation of the
mean energy of the motor along the super-adiabats from its
(instantaneous) adiabatic expression. For an isothermal re-
versible process hWadi= DF and dW = hWirri. Differently, for
the adiabatic dynamics associated to stages 1 and 3 of the Otto
cycle, conservation of the population in |n(t)i is satisfied pro-
vided that bt = b0en(0)/en(t), as it is the case for a large-class
of self-similar processes (here, bt is introduced by noticing
that the physical adiabatic state at time t is characterised by the
occupation probabilities pt

n = e�bt et
n/Ân e�bt et

n ) [8, 26, 27].
As a result, the reference state req

t is not the physical instanta-
neous equilibrium state rad

t =Ân p0
n|n(t)ihn(t)| resulting from

the adiabatic dynamics, and we find

dW =
1
b
[S(rt ||req

t )�S(rad
t ||req

t )]. (9)

From this result, it is clear that, in general, dW 6= 0. However,
it is straightforward to check that, at the final time of the pro-
cess t = t , we have pt

nk = dk,n, which implies dW = 0 and,
in turn, the frictionless nature of the process [cf. Fig. 2(c)].
The time-evolution of the different contribution to dW , i.e.
S(rt ||req

t )/b and S(rad
t ||req

t )/b , are displayed in Figure 2(d).
This result is remarkable in the context of the quantum Otto
cycle: If the baths are reconnected at just the right time t
after both the compression and expansion stages, then the ef-
ficiency of an ideal reversible engine can be reached in finite-
time, therefore implementing a perfectly frictionless finite-
time cycle. As we have built our engine so that friction is
the only source of irreversibility, the super-adiabatic engine
clearly reaches the maximum efficiency of an ideal quasi-
static engine in a finite-time only.

Let us address a final important point. The efficiency in
Eq. (1) of an Otto cycle diminishes explicitly with the break-
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FIG. 3: Quantum cost of running the super-adiabatic expansion stage
of the quantum Otto cycle. We plot the time-averaged deviation
hdW i of the mean energy of the system from the adiabatic eigenen-
ergies. In all cases there is an effective power-law scaling of the
form hdW i ⇠ 1/t . The cut-off time is such that the confining poten-
tial remains a trap along the process, without the need for transiently
inverting it to achieved the required speed up.

down of adiabaticity [19]. In contrast, the super-adiabatic en-
gine put forward in this proposal does achieve the maximum
possible value E = 1�w(t)/w(0). It should be noted, quite
strikingly, that if unlimited resources are available, there is no
fundamental lower-bound on the running time of the adiabats
t1,3. However, it is worth taking a pragmatic approach here
and attempt at the quantification of the energy costs associ-
ated with the running of our super-adiabatic engine. To this
end, we have considered the time-averaged dissipated work
hdW i = t�1 R t

0 dWdt for t > tc, ensuring w2(t) > 0 for all
t 2 [0,t]. The cut-off time tc was taken to be the maximum
running time along the shortcut of the super-adiabat before
the trap is inverted. Indeed, when this occurs, the adiabatic
eigenenergies are not well defined, implying the break-down
of our formalism. The explicit expression for hdW i are re-
ported in the Appendix. Figure 3 shows that the cost of run-
ning the super-adiabatic engine exhibits a neat power-law be-
haviour hdW i ⇠ 1/t for a wide range of parameters. An ex-
plicit upper bound for the power of an engine run can be calcu-
lated using the fundamental limitations set by quantum speed
limit, as shown in the Appendix.

IV. CONCLUSIONS

We have demonstrated the possibility to perform a fully
frictionless quantum cycle working in a finite-time only. Our
proposal exploits the idea of shortcuts to adiabaticity, which
allowed us to bypass the detrimental effects of friction on the
compression and expansion stages in an important thermody-
namical cycle such as the Otto cycle. We believe that our
study embodies only one example of the potential brought
about by the fascinating combination of shortcuts to adiabatic-
ity and the framework for out-of-equilibrium dynamics of a
quantum system. The possibilities to achieve maximum ef-
ficiency of a quantum engine with virtually no friction, yet

�W = hW i � hWadi h�W i = 1

⌧

Z ⌧

0
�Wdt
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This result is remarkable in the context of the quantum Otto
cycle: If the baths are reconnected at just the right time t
after both the compression and expansion stages, then the ef-
ficiency of an ideal reversible engine can be reached in finite-
time, therefore implementing a perfectly frictionless finite-
time cycle. As we have built our engine so that friction is
the only source of irreversibility, the super-adiabatic engine
clearly reaches the maximum efficiency of an ideal quasi-
static engine in a finite-time only.
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down of adiabaticity [19]. In contrast, the super-adiabatic en-
gine put forward in this proposal does achieve the maximum
possible value E = 1�w(t)/w(0). It should be noted, quite
strikingly, that if unlimited resources are available, there is no
fundamental lower-bound on the running time of the adiabats
t1,3. However, it is worth taking a pragmatic approach here
and attempt at the quantification of the energy costs associ-
ated with the running of our super-adiabatic engine. To this
end, we have considered the time-averaged dissipated work
hdW i = t�1 R t

0 dWdt for t > tc, ensuring w2(t) > 0 for all
t 2 [0,t]. The cut-off time tc was taken to be the maximum
running time along the shortcut of the super-adiabat before
the trap is inverted. Indeed, when this occurs, the adiabatic
eigenenergies are not well defined, implying the break-down
of our formalism. The explicit expression for hdW i are re-
ported in the Appendix. Figure 3 shows that the cost of run-
ning the super-adiabatic engine exhibits a neat power-law be-
haviour hdW i ⇠ 1/t for a wide range of parameters. An ex-
plicit upper bound for the power of an engine run can be calcu-
lated using the fundamental limitations set by quantum speed
limit, as shown in the Appendix.

IV. CONCLUSIONS

We have demonstrated the possibility to perform a fully
frictionless quantum cycle working in a finite-time only. Our
proposal exploits the idea of shortcuts to adiabaticity, which
allowed us to bypass the detrimental effects of friction on the
compression and expansion stages in an important thermody-
namical cycle such as the Otto cycle. We believe that our
study embodies only one example of the potential brought
about by the fascinating combination of shortcuts to adiabatic-
ity and the framework for out-of-equilibrium dynamics of a
quantum system. The possibilities to achieve maximum ef-
ficiency of a quantum engine with virtually no friction, yet



 
 Part III 

Design of bent waveguides 
 Tailoring curvature effects 

 
 

del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 
Ryu & Boshier New J. Phys 17, 092002 (2015)  
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Curvature-induced potential (CIP) 

u  Waveguide with non-zero curvature 
 
u  Dimensional reduction of the Schrödinger equation  
     under tight transverse confinement 

u  Emergence of quantum-mechanical local attractive potential 

           
 
     Curvature: rate of change of unit tangent vector   
 
        Switkes, Russel & Skinner, J. Chem. Phys. 67, 3061(1977) 
        da Costa, Phys. Rev. A 23, 1982 (1981) 
        Exner & Seba, J. Math. Phys. 30, 2574 (1989) 
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Curvature effects in atomtronics 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

Curvature affects scattering properties in atom circuits 
 
 
 

Example: wavepacket splitting 

time 
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Supersymmetric reflectionless waveguides 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

u  Supersymmetric quantum mechanics identifies families of reflectionless potentials 
      

     

SUSY partner Hamiltonians share scattering properties 
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Supersymmetric reflectionless waveguides 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

u  Supersymmetric quantum mechanics identifies families of reflectionless potentials 
      

     

SUSY partner Hamiltonians share scattering properties 
 
Idea:  
Design waveguides with a curvature-induced potential that is  
SUSY partners of  V=0 (free dynamics/straight waveguide) 
Reflectionless bent waveguides with unit transmission probability 
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Supersymmetric reflectionless waveguides 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

u  Supersymmetric quantum mechanics identifies families of reflectionless potentials 
      

    Unit transmission probability at any energy 
 
u  Curvature relation between SUSY waveguides 

 

u  Curvature specifies uniquely the waveguide shape (Frenet-Serret equations) 

u  Choose curvature to make CIP reflectionless, isospectral to straight waveguide 
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Supersymmetric reflectionless waveguides 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

u  Supersymmetric quantum mechanics identifies families of reflectionless potentials 
u  Choose curvature to make CIP reflectionless 
 
 
 

Curved waveguide Curved SUSY waveguide 

isospectral to straight waveguide 
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Curvature-induced effects: Elliptical waveguide potentials 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 
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Quantum carpets: Elliptical waveguide potentials 

 
del Campo, Boshier, Saxena, Sci. Rep. 4, 5274  (2014) 

Released  localized wavepacket 
Talbot oscillations  

in the density profile 

a)   Periodic pattern in the density 
profile in a ring trap  

[see Friesch et al. New J. Phys. 2, 4 (2000)] 

a)  Suppressed by curvature in 
elliptical trap 

b)  Recovered in elliptical trap with 
cancelled curvature-induced 
potential: isospectral to ring trap 
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